Fast multidimensional binary image processing with OpenCL

Daniel Oliveira Dantas, H. Leal
{"title":"Fast multidimensional binary image processing with OpenCL","authors":"Daniel Oliveira Dantas, H. Leal","doi":"10.1109/HPCS48598.2019.9188210","DOIUrl":null,"url":null,"abstract":"Binary images are often used in image processing pipelines, and are usually stored in the unpacked format, i.e., 8 bits per pixel. The packed format uses 1 bit per pixel, 8 times less memory, and is a good option when dealing with images too big to fit in RAM. This paper presents a parallel implementation of pixelwise and window operators for packed binary images. The implementation, written in OpenCL, can run in GPUs or multiple core CPUs. The proposed Destination Word Accumulation (DWA) implementation of morphological operations is faster than Leptonica in 2D and up to two orders of magnitude faster than Python and MATLAB in 1D to 5D.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Binary images are often used in image processing pipelines, and are usually stored in the unpacked format, i.e., 8 bits per pixel. The packed format uses 1 bit per pixel, 8 times less memory, and is a good option when dealing with images too big to fit in RAM. This paper presents a parallel implementation of pixelwise and window operators for packed binary images. The implementation, written in OpenCL, can run in GPUs or multiple core CPUs. The proposed Destination Word Accumulation (DWA) implementation of morphological operations is faster than Leptonica in 2D and up to two orders of magnitude faster than Python and MATLAB in 1D to 5D.
用OpenCL快速处理多维二值图像
二值图像通常用于图像处理管道,通常以未打包格式存储,即每像素8位。压缩格式每像素使用1位,内存减少8倍,当处理太大而无法装入RAM的图像时,这是一个很好的选择。本文提出了一种用于压缩二值图像的像素算子和窗口算子的并行实现方法。该实现是用OpenCL编写的,可以在gpu或多核cpu上运行。提出的目标词积累(DWA)实现形态学操作在2D上比Leptonica快,在1D到5D上比Python和MATLAB快两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信