{"title":"The Bundle of Simultaneously Diagonalizable N-tuples of Matrices","authors":"García Planas, M. Isabel","doi":"10.37394/23206.2020.19.21","DOIUrl":null,"url":null,"abstract":"M. I. GARCÍA-PLANAS Universitat Politècnica de Catalunya Departament de Matemàtiques Mineria 1, 08038 Barcelona SPAIN maria.isabel.garcia@upc.edu Abstract: In this paper, a review of the simultaneous diagonalization of n-tuples of matrices for its applications in sciences is presented. For example, in quantum mechanics, position and momentum operators do not have a shared base that can represent the states of the system because they not commute, which is why switching operators form a key element of quantum physics since they define quantities that are compatible, that is, defined simultaneously. We are going to study this kind of family of linear operators using geometric constructions such as the principal bundles and associating them with a cohomology class measuring the deviation of the local product structure from the global product structure.","PeriodicalId":112268,"journal":{"name":"WSEAS Transactions on Mathematics archive","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2020.19.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
M. I. GARCÍA-PLANAS Universitat Politècnica de Catalunya Departament de Matemàtiques Mineria 1, 08038 Barcelona SPAIN maria.isabel.garcia@upc.edu Abstract: In this paper, a review of the simultaneous diagonalization of n-tuples of matrices for its applications in sciences is presented. For example, in quantum mechanics, position and momentum operators do not have a shared base that can represent the states of the system because they not commute, which is why switching operators form a key element of quantum physics since they define quantities that are compatible, that is, defined simultaneously. We are going to study this kind of family of linear operators using geometric constructions such as the principal bundles and associating them with a cohomology class measuring the deviation of the local product structure from the global product structure.