Heuristic Based Learning of Parameters for Dictionaries in Sparse Representations

Rajesh K, A. Negi
{"title":"Heuristic Based Learning of Parameters for Dictionaries in Sparse Representations","authors":"Rajesh K, A. Negi","doi":"10.1109/SSCI.2018.8628661","DOIUrl":null,"url":null,"abstract":"Sparse representation has attracted attention recently by successful applications in the computer vision domain. The success of these methods depends on the learned dictionary as it represents the latent feature space of the data. Different parameters affect the dictionary learning process like the number of atoms and sparsity limit. Generally, these parameters are learned through trial and error experimentation which requires a lot of time. In the literature, no approach is seen that attempts to relate these dictionary parameters to the data. In this paper, we propose heuristics for this problem. These heuristics use statistical properties of the data to estimate dictionary parameters. The proposed heuristics are applied to several datasets.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Sparse representation has attracted attention recently by successful applications in the computer vision domain. The success of these methods depends on the learned dictionary as it represents the latent feature space of the data. Different parameters affect the dictionary learning process like the number of atoms and sparsity limit. Generally, these parameters are learned through trial and error experimentation which requires a lot of time. In the literature, no approach is seen that attempts to relate these dictionary parameters to the data. In this paper, we propose heuristics for this problem. These heuristics use statistical properties of the data to estimate dictionary parameters. The proposed heuristics are applied to several datasets.
基于启发式的稀疏表示字典参数学习
近年来,稀疏表示在计算机视觉领域的成功应用引起了人们的关注。这些方法的成功取决于学习字典,因为它代表了数据的潜在特征空间。不同的参数影响字典学习过程,如原子数和稀疏性限制。通常,这些参数是通过试错实验来学习的,这需要大量的时间。在文献中,没有看到任何方法试图将这些字典参数与数据联系起来。在本文中,我们提出了这个问题的启发式。这些启发式方法使用数据的统计属性来估计字典参数。提出的启发式算法应用于多个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信