Implemention of Reinforcement Learning Environment for Mobile Manipulator Using Robo-gym

Myunghyun Kim, Sungwoo Yang, Soo-Hyek Kang, Wonha Kim, D. Kim
{"title":"Implemention of Reinforcement Learning Environment for Mobile Manipulator Using Robo-gym","authors":"Myunghyun Kim, Sungwoo Yang, Soo-Hyek Kang, Wonha Kim, D. Kim","doi":"10.1109/IRC55401.2022.00056","DOIUrl":null,"url":null,"abstract":"Many studies utilize reinforcement learning in simulation environments to control robots. Since simulation environments do not provide reinforcement learning environments for all robots, it is important for researchers to choose a simulation environment with the robots they use. This paper adds and expands a new robot-platform to the robot-gym environment, a reinforcement learning framework used in the Gazebo simulation environment. The added robot-platform is Husky-ur3, a mobile manipulator robot, and it can recognize the coordinates of the target point by itself through the camera. It was confirmed that the mobile manipulator learning environment was well established through experiments of recognizing and following target.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many studies utilize reinforcement learning in simulation environments to control robots. Since simulation environments do not provide reinforcement learning environments for all robots, it is important for researchers to choose a simulation environment with the robots they use. This paper adds and expands a new robot-platform to the robot-gym environment, a reinforcement learning framework used in the Gazebo simulation environment. The added robot-platform is Husky-ur3, a mobile manipulator robot, and it can recognize the coordinates of the target point by itself through the camera. It was confirmed that the mobile manipulator learning environment was well established through experiments of recognizing and following target.
基于Robo-gym的移动机械手强化学习环境的实现
许多研究利用仿真环境中的强化学习来控制机器人。由于仿真环境不能为所有机器人提供强化学习环境,因此研究人员选择与他们使用的机器人相匹配的仿真环境是很重要的。本文在机器人健身环境中增加并扩展了一个新的机器人平台,一个用于Gazebo仿真环境的强化学习框架。增加的机器人平台为移动机械手Husky-ur3,它可以通过摄像头自行识别目标点的坐标。通过目标识别与跟踪实验,验证了该移动机械臂学习环境的建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信