Applying Social Network Extraction With Named Entity Recognition to the Examination of Political Bias Within Online News Articles

K. Lin, C. Tsai
{"title":"Applying Social Network Extraction With Named Entity Recognition to the Examination of Political Bias Within Online News Articles","authors":"K. Lin, C. Tsai","doi":"10.1145/3430199.3430219","DOIUrl":null,"url":null,"abstract":"We aim to expand the application of social network extraction with NER tools, which to date is largely limited to fiction. With the premise that news articles resemble mini-stories, this study explores the extraction of social networks from online United States news articles to examine relationships between political bias and network features. We find statistical significance with most trends, and find no substantial differences between Liberal and Conservative bias, but bias and neutrality. Furthermore, this study identifies several issues with social network analysis, proposing a more rigorous examination of textual characteristics that affect network features.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We aim to expand the application of social network extraction with NER tools, which to date is largely limited to fiction. With the premise that news articles resemble mini-stories, this study explores the extraction of social networks from online United States news articles to examine relationships between political bias and network features. We find statistical significance with most trends, and find no substantial differences between Liberal and Conservative bias, but bias and neutrality. Furthermore, this study identifies several issues with social network analysis, proposing a more rigorous examination of textual characteristics that affect network features.
基于命名实体识别的社会网络提取在网络新闻文章政治偏见检测中的应用
我们的目标是用NER工具扩展社交网络提取的应用,到目前为止,这主要局限于小说。在新闻文章类似于小故事的前提下,本研究探讨了从美国在线新闻文章中提取社会网络,以检验政治偏见与网络特征之间的关系。我们发现大多数趋势具有统计学意义,并且发现自由党和保守党的偏见之间没有实质性差异,但偏见和中立之间存在差异。此外,本研究确定了社会网络分析的几个问题,提出了对影响网络特征的文本特征进行更严格的检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信