Hartmut Kaiser, T. Heller, Bryce Adelstein-Lelbach, Adrian Serio, D. Fey
{"title":"HPX: A Task Based Programming Model in a Global Address Space","authors":"Hartmut Kaiser, T. Heller, Bryce Adelstein-Lelbach, Adrian Serio, D. Fey","doi":"10.1145/2676870.2676883","DOIUrl":null,"url":null,"abstract":"The significant increase in complexity of Exascale platforms due to energy-constrained, billion-way parallelism, with major changes to processor and memory architecture, requires new energy-efficient and resilient programming techniques that are portable across multiple future generations of machines. We believe that guaranteeing adequate scalability, programmability, performance portability, resilience, and energy efficiency requires a fundamentally new approach, combined with a transition path for existing scientific applications, to fully explore the rewards of todays and tomorrows systems. We present HPX -- a parallel runtime system which extends the C++11/14 standard to facilitate distributed operations, enable fine-grained constraint based parallelism, and support runtime adaptive resource management. This provides a widely accepted API enabling programmability, composability and performance portability of user applications. By employing a global address space, we seamlessly augment the standard to apply to a distributed case. We present HPX's architecture, design decisions, and results selected from a diverse set of application runs showing superior performance, scalability, and efficiency over conventional practice.","PeriodicalId":245693,"journal":{"name":"International Conference on Partitioned Global Address Space Programming Models","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"276","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Partitioned Global Address Space Programming Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676870.2676883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 276
Abstract
The significant increase in complexity of Exascale platforms due to energy-constrained, billion-way parallelism, with major changes to processor and memory architecture, requires new energy-efficient and resilient programming techniques that are portable across multiple future generations of machines. We believe that guaranteeing adequate scalability, programmability, performance portability, resilience, and energy efficiency requires a fundamentally new approach, combined with a transition path for existing scientific applications, to fully explore the rewards of todays and tomorrows systems. We present HPX -- a parallel runtime system which extends the C++11/14 standard to facilitate distributed operations, enable fine-grained constraint based parallelism, and support runtime adaptive resource management. This provides a widely accepted API enabling programmability, composability and performance portability of user applications. By employing a global address space, we seamlessly augment the standard to apply to a distributed case. We present HPX's architecture, design decisions, and results selected from a diverse set of application runs showing superior performance, scalability, and efficiency over conventional practice.