Novel IPCA-Based Classifiers and Their Application to Spam Filtering

A. Rozza, G. Lombardi, E. Casiraghi
{"title":"Novel IPCA-Based Classifiers and Their Application to Spam Filtering","authors":"A. Rozza, G. Lombardi, E. Casiraghi","doi":"10.1109/ISDA.2009.21","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel two-class classifier, called IPCAC, based on the Isotropic Principal Component Analysis technique; it allows to deal with training data drawn from Mixture of Gaussian distributions, by projecting the data on the Fisher subspace that separates the two classes. The obtained results demonstrate that IPCAC is a promising technique; furthermore, to cope with training datasets being dynamically supplied, and to work with non-linearly separable classes, two improvements of this classifier are defined: a model merging algorithm, and a kernel version of IPCAC. The effectiveness of the proposed methods is shown by their application to the spam classification problem, and by the comparison of the achieved results with those obtained by Support Vector Machines SVM, and K-Nearest Neighbors KNN.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes a novel two-class classifier, called IPCAC, based on the Isotropic Principal Component Analysis technique; it allows to deal with training data drawn from Mixture of Gaussian distributions, by projecting the data on the Fisher subspace that separates the two classes. The obtained results demonstrate that IPCAC is a promising technique; furthermore, to cope with training datasets being dynamically supplied, and to work with non-linearly separable classes, two improvements of this classifier are defined: a model merging algorithm, and a kernel version of IPCAC. The effectiveness of the proposed methods is shown by their application to the spam classification problem, and by the comparison of the achieved results with those obtained by Support Vector Machines SVM, and K-Nearest Neighbors KNN.
基于ipca的新型分类器及其在垃圾邮件过滤中的应用
基于各向同性主成分分析技术,提出了一种新的两类分类器IPCAC;它允许处理从混合高斯分布中提取的训练数据,通过将数据投影到分隔两类的Fisher子空间上。结果表明,IPCAC是一种很有前途的技术;此外,为了处理动态提供的训练数据集,并处理非线性可分类,定义了该分类器的两个改进:模型合并算法和IPCAC的内核版本。将所提方法应用于垃圾邮件分类问题,并将所获得的结果与支持向量机SVM和k近邻KNN的结果进行比较,证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信