A universal scheme for learning

V. Farias, C. Moallemi, Benjamin Van Roy, T. Weissman
{"title":"A universal scheme for learning","authors":"V. Farias, C. Moallemi, Benjamin Van Roy, T. Weissman","doi":"10.1109/ISIT.2005.1523523","DOIUrl":null,"url":null,"abstract":"We consider the problem of optimal control of a Kth order Markov process so as to minimize long-term average cost, a framework with many applications in communications and beyond. Specifically, we wish to do so without knowledge of either the transition kernel or even the order K. We develop and analyze two algorithms, based on the Lempel-Ziv scheme for data compression, that maintain probability estimates along variable length contexts. We establish that eventually, with probability 1, the optimal action is taken at each context. Further, in the case of the second algorithm, we establish almost sure asymptotic optimality","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of optimal control of a Kth order Markov process so as to minimize long-term average cost, a framework with many applications in communications and beyond. Specifically, we wish to do so without knowledge of either the transition kernel or even the order K. We develop and analyze two algorithms, based on the Lempel-Ziv scheme for data compression, that maintain probability estimates along variable length contexts. We establish that eventually, with probability 1, the optimal action is taken at each context. Further, in the case of the second algorithm, we establish almost sure asymptotic optimality
学习的通用方案
我们考虑了一个k阶马尔可夫过程的最优控制问题,以使长期平均代价最小化,这个框架在通信和其他领域有许多应用。具体来说,我们希望在不知道转换核甚至k阶的情况下做到这一点。我们基于数据压缩的Lempel-Ziv方案开发并分析了两种算法,这两种算法保持了沿可变长度上下文的概率估计。我们最终确定,在每种情况下采取最佳行动的概率为1。此外,对于第二种算法,我们建立了几乎确定的渐近最优性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信