Efficient algorithms for ‘universally’ constrained matrix and tensor factorization

Kejun Huang, N. Sidiropoulos, A. Liavas
{"title":"Efficient algorithms for ‘universally’ constrained matrix and tensor factorization","authors":"Kejun Huang, N. Sidiropoulos, A. Liavas","doi":"10.1109/eusipco.2015.7362839","DOIUrl":null,"url":null,"abstract":"We propose a general algorithmic framework for constrained matrix and tensor factorization, which is widely used in unsupervised learning. The new framework is a hybrid between alternating optimization (AO) and the alternating direction method of multipliers (ADMM): each matrix factor is updated in turn, using ADMM. This combination can naturally accommodate a great variety of constraints on the factor matrices, hence the term `universal'. Computation caching and warm start strategies are used to ensure that each update is evaluated efficiently, while the outer AO framework guarantees that the algorithm converges monotonically. Simulations on synthetic data show significantly improved performance relative to state-of-the-art algorithms.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"17 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eusipco.2015.7362839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a general algorithmic framework for constrained matrix and tensor factorization, which is widely used in unsupervised learning. The new framework is a hybrid between alternating optimization (AO) and the alternating direction method of multipliers (ADMM): each matrix factor is updated in turn, using ADMM. This combination can naturally accommodate a great variety of constraints on the factor matrices, hence the term `universal'. Computation caching and warm start strategies are used to ensure that each update is evaluated efficiently, while the outer AO framework guarantees that the algorithm converges monotonically. Simulations on synthetic data show significantly improved performance relative to state-of-the-art algorithms.
通用约束矩阵和张量分解的有效算法
本文提出了一种约束矩阵和张量分解的通用算法框架,该框架在无监督学习中得到了广泛的应用。新框架是交替优化(AO)和乘法器交替方向法(ADMM)的混合:每个矩阵因子轮流更新,使用ADMM。这种组合可以自然地适应因子矩阵上的各种约束,因此称为“通用”。计算缓存和热启动策略保证了每次更新的有效评估,而外部AO框架保证了算法的单调收敛。对合成数据的模拟表明,相对于最先进的算法,性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信