Multicast Scaling Laws with Hierarchical Cooperation

Chenhui Hu, Xinbing Wang, D. Nie, Jun Zhao
{"title":"Multicast Scaling Laws with Hierarchical Cooperation","authors":"Chenhui Hu, Xinbing Wang, D. Nie, Jun Zhao","doi":"10.1109/INFCOM.2010.5462000","DOIUrl":null,"url":null,"abstract":"A new class of scheduling policies for multicast traffic are proposed in this paper. By utilizing hierarchical cooperative MIMO transmission, our new policies can obtain an aggregate throughput of $\\Omega\\big((\\frac{n}{k})^{1-\\epsilon}\\big)$ for any $\\epsilon>0$. This achieves a gain of nearly $\\sqrt{\\frac{n}{k}}$ compared with non-cooperative scheme in \\cite{paper:MulticastCapacityXYLi}. Between the two cooperative strategies in our paper, the converge-based one is superior to the other on delay, while the throughput and energy consumption performances are nearly the same. Moreover, to schedule the traffic in a converge multicast manner instead of the simple multicast, we can dramatically reduce the delay by a factor nearly $(\\frac{n}{k})^\\frac{h}{2}$, where $h>1$ is the number of the hierarchical layers. Our optimal cooperative strategy achieves an approximate delay-throughput tradeoff $D(n,k)/T(n,k)=\\Theta(k)$ when $h\\rightarrow\\infty$. This tradeoff ratio is identical to that of non-cooperative scheme, while the throughput performance is greatly improved. Besides, for certain $k$ and $h$, the tradeoff ratio is even better than that of unicast.","PeriodicalId":259639,"journal":{"name":"2010 Proceedings IEEE INFOCOM","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2010.5462000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

A new class of scheduling policies for multicast traffic are proposed in this paper. By utilizing hierarchical cooperative MIMO transmission, our new policies can obtain an aggregate throughput of $\Omega\big((\frac{n}{k})^{1-\epsilon}\big)$ for any $\epsilon>0$. This achieves a gain of nearly $\sqrt{\frac{n}{k}}$ compared with non-cooperative scheme in \cite{paper:MulticastCapacityXYLi}. Between the two cooperative strategies in our paper, the converge-based one is superior to the other on delay, while the throughput and energy consumption performances are nearly the same. Moreover, to schedule the traffic in a converge multicast manner instead of the simple multicast, we can dramatically reduce the delay by a factor nearly $(\frac{n}{k})^\frac{h}{2}$, where $h>1$ is the number of the hierarchical layers. Our optimal cooperative strategy achieves an approximate delay-throughput tradeoff $D(n,k)/T(n,k)=\Theta(k)$ when $h\rightarrow\infty$. This tradeoff ratio is identical to that of non-cooperative scheme, while the throughput performance is greatly improved. Besides, for certain $k$ and $h$, the tradeoff ratio is even better than that of unicast.
具有层次合作的组播缩放规律
提出了一种新的组播流量调度策略。通过分层协同MIMO传输,我们的新策略可以获得任意$\epsilon>0$的总吞吐量为$\Omega\big((\frac{n}{k})^{1-\epsilon}\big)$。与\cite{paper:MulticastCapacityXYLi}中的非合作方案相比,实现了接近$\sqrt{\frac{n}{k}}$的增益。在两种协作策略中,基于收敛的协作策略在延迟方面优于基于收敛的协作策略,而吞吐量和能耗性能基本相同。此外,为了以聚合组播方式而不是简单的组播方式调度流量,我们可以通过接近$(\frac{n}{k})^\frac{h}{2}$的因子显着减少延迟,其中$h>1$是分层层的数量。我们的最优合作策略实现了近似延迟-吞吐量权衡$D(n,k)/T(n,k)=\Theta(k)$当$h\rightarrow\infty$。该权衡比与非合作方案相同,但吞吐量性能大大提高。此外,对于某些$k$和$h$,权衡率甚至比单播更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信