M. Tkachuk, A. Grabovskiy, Natalija Pinchuk, V. Tretyak, N. Domina, I. Voloshyna
{"title":"TECHNOLOGY OF SHAPING AND ANALYSIS OF CONTACT INTERACTION OF MACHINE PARTS","authors":"M. Tkachuk, A. Grabovskiy, Natalija Pinchuk, V. Tretyak, N. Domina, I. Voloshyna","doi":"10.20998/2079-0775.2023.1.11","DOIUrl":null,"url":null,"abstract":"Elements of transmissions and other machine parts in many cases have a complex shape of contacting surfaces. On the one hand, their form is determined by kinematic conditions associated with the transfer of motion between structural elements. On the other hand, the design geometry is limited by strength criteria. Keeping the shape of the contacting surfaces as close to each other as possible generally facilitates the reduction of stress levels. As a result, there is a combined problem of synthesis of geometric form and analysis of kinematic interaction of complex-profile bodies. A general approach that implements objective-driven variation of the shape of the contacting bodies has been developed for this purpose. At the same time, the varied geometric shape is approximated by prismatic finite elements. A topologically regular mesh of finite elements is formed. As a result, it is possible to parametrize the geometrical model of the researched objects, as well as to perform automated multivariate calculations. Accordingly, this array of information becomes the basis for establishing patterns of influence of various factors on the stress-deformed state of contacting bodies. It also makes it possible to formulate recommendations regarding the substantiation of advanced technological solutions of machine parts that transmit mechanical loads through moving contact. Therefore, both the functional properties of these structural components and limitations, for example, in terms of strength and durability, are provided. A method of geometric shape synthesis integrated with generalized parametric modeling was developed, as well as an approach to geometric synthesis of the shape of kinematically generated surfaces. This makes it possible to calculate the distribution of contact pressure and the stress-strain state of contacting complex bodies. For the formation of high-quality finite-element models, a method based on the creation of topologically regular mesh in the curvilinear coordinates of the working surfaces is proposed. The application and effectiveness of the developed methods and models are illustrated on the example of two-parameter transmissions. Correspondence of the results obtained by different methods was confirmed.\nKeywords: complex-profile bodies; contact interaction; stress-strained state; kinematic interaction","PeriodicalId":348363,"journal":{"name":"Bulletin of the National Technical University «KhPI» Series: Engineering and CAD","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the National Technical University «KhPI» Series: Engineering and CAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2079-0775.2023.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Elements of transmissions and other machine parts in many cases have a complex shape of contacting surfaces. On the one hand, their form is determined by kinematic conditions associated with the transfer of motion between structural elements. On the other hand, the design geometry is limited by strength criteria. Keeping the shape of the contacting surfaces as close to each other as possible generally facilitates the reduction of stress levels. As a result, there is a combined problem of synthesis of geometric form and analysis of kinematic interaction of complex-profile bodies. A general approach that implements objective-driven variation of the shape of the contacting bodies has been developed for this purpose. At the same time, the varied geometric shape is approximated by prismatic finite elements. A topologically regular mesh of finite elements is formed. As a result, it is possible to parametrize the geometrical model of the researched objects, as well as to perform automated multivariate calculations. Accordingly, this array of information becomes the basis for establishing patterns of influence of various factors on the stress-deformed state of contacting bodies. It also makes it possible to formulate recommendations regarding the substantiation of advanced technological solutions of machine parts that transmit mechanical loads through moving contact. Therefore, both the functional properties of these structural components and limitations, for example, in terms of strength and durability, are provided. A method of geometric shape synthesis integrated with generalized parametric modeling was developed, as well as an approach to geometric synthesis of the shape of kinematically generated surfaces. This makes it possible to calculate the distribution of contact pressure and the stress-strain state of contacting complex bodies. For the formation of high-quality finite-element models, a method based on the creation of topologically regular mesh in the curvilinear coordinates of the working surfaces is proposed. The application and effectiveness of the developed methods and models are illustrated on the example of two-parameter transmissions. Correspondence of the results obtained by different methods was confirmed.
Keywords: complex-profile bodies; contact interaction; stress-strained state; kinematic interaction