Efficient Type and Polarity Classification of Chromosome Images using CNNs: a Primary Evaluation on Multiple Datasets

Le Quoc Anh, Vu Duy Thanh, Nguyen Huu Hoang Son, Doan Thi Kim Phuong, L. T. Anh, Do Thi Ram, Nguyen Thanh Binh Minh, Tran Hoang Tung, N. H. Thinh, Le Anh Vu Ha, Luu Manh Ha
{"title":"Efficient Type and Polarity Classification of Chromosome Images using CNNs: a Primary Evaluation on Multiple Datasets","authors":"Le Quoc Anh, Vu Duy Thanh, Nguyen Huu Hoang Son, Doan Thi Kim Phuong, L. T. Anh, Do Thi Ram, Nguyen Thanh Binh Minh, Tran Hoang Tung, N. H. Thinh, Le Anh Vu Ha, Luu Manh Ha","doi":"10.1109/ICCE55644.2022.9852034","DOIUrl":null,"url":null,"abstract":"Karyotyping is critical for screening genetic diseases in an early stage. However, the manual karyotyping process is a labor-intensive task. This paper focuses on automatic chromosome image classification, which is a step in karyotyping. We propose a convolutional neural network architecture for efficient type and polarity classification of the chromosome image, namely ETPC, which is leveraged from the EfficientNet family’s development. The ETPC’s classifier with a weighted classification loss function are designed for efficiency in the training process. We perform our experiment with two training scenarios on four clinical datasets. The experiment on a dataset of 28,225 original chromosome images demonstrates that the proposed network achieved comparable results, with an accuracy of 95.3% for the type classification and 99% for the polarity classification, while having a significantly smaller number of parameters than state-of-the-art methods. Furthermore, the experiment on multiple datasets shows that the proposed network can dramatically improve the classification accuracy on new datasets with a small amount of fine-tuning data.","PeriodicalId":388547,"journal":{"name":"2022 IEEE Ninth International Conference on Communications and Electronics (ICCE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Ninth International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE55644.2022.9852034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Karyotyping is critical for screening genetic diseases in an early stage. However, the manual karyotyping process is a labor-intensive task. This paper focuses on automatic chromosome image classification, which is a step in karyotyping. We propose a convolutional neural network architecture for efficient type and polarity classification of the chromosome image, namely ETPC, which is leveraged from the EfficientNet family’s development. The ETPC’s classifier with a weighted classification loss function are designed for efficiency in the training process. We perform our experiment with two training scenarios on four clinical datasets. The experiment on a dataset of 28,225 original chromosome images demonstrates that the proposed network achieved comparable results, with an accuracy of 95.3% for the type classification and 99% for the polarity classification, while having a significantly smaller number of parameters than state-of-the-art methods. Furthermore, the experiment on multiple datasets shows that the proposed network can dramatically improve the classification accuracy on new datasets with a small amount of fine-tuning data.
基于cnn的染色体图像高效类型和极性分类:对多数据集的初步评估
染色体组型对早期筛查遗传疾病至关重要。然而,人工核型过程是一项劳动密集型的任务。染色体图像自动分类是染色体组型的一个重要步骤。我们提出了一种卷积神经网络架构,用于染色体图像的有效类型和极性分类,即ETPC,它借鉴了EfficientNet家族的发展。为了提高训练效率,设计了带有加权分类损失函数的ETPC分类器。我们在四个临床数据集上使用两个训练场景进行实验。在28,225个原始染色体图像数据集上的实验表明,所提出的网络取得了相当的结果,类型分类的准确率为95.3%,极性分类的准确率为99%,而参数数量明显少于最先进的方法。此外,在多数据集上的实验表明,该网络可以在少量微调数据的情况下显著提高新数据集的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信