Human Upper Body Pose Recognition Using Adaboost Template for Natural Human Robot Interaction

Liyuan Li, Kah Eng Hoe, Xinguo Yu, Li Dong, Xinqi Chu
{"title":"Human Upper Body Pose Recognition Using Adaboost Template for Natural Human Robot Interaction","authors":"Liyuan Li, Kah Eng Hoe, Xinguo Yu, Li Dong, Xinqi Chu","doi":"10.1109/CRV.2010.55","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel Adaboost template to recognize human upper body poses from disparity images for natural human robot interaction (HRI). First, the upper body poses of standing persons are classified into seven categories of views. For each category, a mean template, variance template, and percentage template are generated. Then, the template region is divided into positive and negative regions, corresponding to the region of bodies and surrounding open space. A weak classifier is designed for each pixel in the template. A new EM-like Adaboost learning algorithm is designed to learn the Adaboost template. Different from existing Adaboost classifiers, we show that the Adaboost template can be used not only for recognition but also for adaptive top-down segmentation. By using Adaboost template, only a few positive samples for each category are required for learning. Comparison with conventional template matching techniques has been made. Experimental results show that significant improvements can be achieved in both cases. The method has been deployed in a social robot to estimate human attentions to the robot in real-time human robot interaction.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we propose a novel Adaboost template to recognize human upper body poses from disparity images for natural human robot interaction (HRI). First, the upper body poses of standing persons are classified into seven categories of views. For each category, a mean template, variance template, and percentage template are generated. Then, the template region is divided into positive and negative regions, corresponding to the region of bodies and surrounding open space. A weak classifier is designed for each pixel in the template. A new EM-like Adaboost learning algorithm is designed to learn the Adaboost template. Different from existing Adaboost classifiers, we show that the Adaboost template can be used not only for recognition but also for adaptive top-down segmentation. By using Adaboost template, only a few positive samples for each category are required for learning. Comparison with conventional template matching techniques has been made. Experimental results show that significant improvements can be achieved in both cases. The method has been deployed in a social robot to estimate human attentions to the robot in real-time human robot interaction.
基于Adaboost模板的自然人机交互人体上半身姿势识别
在本文中,我们提出了一种新的Adaboost模板,用于自然人机交互(HRI)中从视差图像中识别人体上半身姿势。首先,将站立者的上半身姿势分为7类观点。对于每个类别,将生成平均值模板、方差模板和百分比模板。然后将模板区域划分为正、负两个区域,分别对应主体区域和周边开放空间。为模板中的每个像素设计一个弱分类器。设计了一种新的类似em的Adaboost学习算法来学习Adaboost模板。与现有的Adaboost分类器不同,我们表明Adaboost模板不仅可以用于识别,还可以用于自适应自顶向下分割。通过使用Adaboost模板,每个类别只需要几个正样本进行学习。并与传统模板匹配技术进行了比较。实验结果表明,在这两种情况下都可以取得显著的改进。该方法已应用于一个社交机器人中,用于实时人机交互中估计人类对机器人的关注程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信