Machine Vision based Object Detection using Deep Learning Techniques

Garapati. Deva ram ganesh, P. Vidyullatha, Maddipati. Ravi krishna, S.Thanooj Prapulla, A. Pavan Saran, Puppala Ramya
{"title":"Machine Vision based Object Detection using Deep Learning Techniques","authors":"Garapati. Deva ram ganesh, P. Vidyullatha, Maddipati. Ravi krishna, S.Thanooj Prapulla, A. Pavan Saran, Puppala Ramya","doi":"10.1109/ICSMDI57622.2023.00088","DOIUrl":null,"url":null,"abstract":"The identification of items on the surface of the earth is widely known to be possible using hyperspectral images. To do classification and identify the various items on the image, the majority of classifiers just take into account spectral information. In this study, a neural network convolutional is used to classify the hyperspectral picture based on spectral and spatial properties (CNN). There are only a few areas in the hyperspectral picture. The multilayer perceptron aids in the categorization of visual characteristics into many classes while CNN builds the upper categorical level of strategic spectral and spatial aspects in each of the patch. The patch size of 13 × 13 is found to be sufficient to attain the best accuracy. Compared to other classifiers, CNN requires greater computing time for training and testing. In comparison to other classifiers, simulation findings indicate that CNN stores the hyperspectral picture with the best classification accuracy.","PeriodicalId":373017,"journal":{"name":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMDI57622.2023.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of items on the surface of the earth is widely known to be possible using hyperspectral images. To do classification and identify the various items on the image, the majority of classifiers just take into account spectral information. In this study, a neural network convolutional is used to classify the hyperspectral picture based on spectral and spatial properties (CNN). There are only a few areas in the hyperspectral picture. The multilayer perceptron aids in the categorization of visual characteristics into many classes while CNN builds the upper categorical level of strategic spectral and spatial aspects in each of the patch. The patch size of 13 × 13 is found to be sufficient to attain the best accuracy. Compared to other classifiers, CNN requires greater computing time for training and testing. In comparison to other classifiers, simulation findings indicate that CNN stores the hyperspectral picture with the best classification accuracy.
使用深度学习技术的基于机器视觉的目标检测
众所周知,利用高光谱图像可以识别地球表面上的物体。为了对图像上的各种项目进行分类和识别,大多数分类器只考虑光谱信息。在本研究中,使用神经网络卷积对基于光谱和空间属性(CNN)的高光谱图像进行分类。在高光谱图像中只有少数区域。多层感知器有助于将视觉特征分类为许多类,而CNN则在每个patch中构建策略光谱和空间方面的上层分类层。发现13 × 13的贴片大小足以达到最佳精度。与其他分类器相比,CNN需要更多的计算时间进行训练和测试。与其他分类器相比,仿真结果表明,CNN存储的高光谱图像具有最好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信