{"title":"A Sketch Classifier Technique with Deep Learning Models Realized in an Embedded System","authors":"T. Tsai, Po-Ting Chi, Kuo-Hsing Cheng","doi":"10.1109/DDECS.2019.8724656","DOIUrl":null,"url":null,"abstract":"Since 2011, due to the growth in the amount of information, the innovation of learning algorithms and the improvement of computer technology make the application of artificial intelligence feasible in a wide range of fields. This paper presents a sketch classifier technique with deep learning models. We use the depth-wise convolution layer to lighten the deep neural network. The result shows the improvement in approximately 1/5 of computation. We use Google Quick Draw dataset to train and evaluate the network, which can have 98% accuracy in 10 categories and 85% accuracy in 100 categories. Finally, we realize it on STM32F469I Discovery development board for demonstration. The system can achieve real-time implementation of sketch classification.","PeriodicalId":197053,"journal":{"name":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2019.8724656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Since 2011, due to the growth in the amount of information, the innovation of learning algorithms and the improvement of computer technology make the application of artificial intelligence feasible in a wide range of fields. This paper presents a sketch classifier technique with deep learning models. We use the depth-wise convolution layer to lighten the deep neural network. The result shows the improvement in approximately 1/5 of computation. We use Google Quick Draw dataset to train and evaluate the network, which can have 98% accuracy in 10 categories and 85% accuracy in 100 categories. Finally, we realize it on STM32F469I Discovery development board for demonstration. The system can achieve real-time implementation of sketch classification.