Exploratory Analysis and Feature Selection for the Prediction of Nitrogen Dioxide

Ditsuhi Iskandaryan, S. Di Sabatino, Francisco Ramos, S. Trilles
{"title":"Exploratory Analysis and Feature Selection for the Prediction of Nitrogen Dioxide","authors":"Ditsuhi Iskandaryan, S. Di Sabatino, Francisco Ramos, S. Trilles","doi":"10.5194/agile-giss-3-6-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Nitrogen dioxide is one of the most hazardous pollutants identified by the World Health Organisation. Predicting and reducing pollutants is becoming a very urgent task and many methods have been used to predict their concentration, such as physical or machine learning models. In addition to choosing the right model, it is also critical to choose the appropriate features. This work focuses on the spatiotemporal prediction of nitrogen dioxide concentration using Bidirectional Convolutional LSTM integrated with the exploration of nitrogen dioxide and associated features, as well as the implementation of feature selection methods. The Root Mean Square Error and the Mean Absolute Error were used to evaluate the proposed approach.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-3-6-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract. Nitrogen dioxide is one of the most hazardous pollutants identified by the World Health Organisation. Predicting and reducing pollutants is becoming a very urgent task and many methods have been used to predict their concentration, such as physical or machine learning models. In addition to choosing the right model, it is also critical to choose the appropriate features. This work focuses on the spatiotemporal prediction of nitrogen dioxide concentration using Bidirectional Convolutional LSTM integrated with the exploration of nitrogen dioxide and associated features, as well as the implementation of feature selection methods. The Root Mean Square Error and the Mean Absolute Error were used to evaluate the proposed approach.
二氧化氮预测的探索性分析与特征选择
摘要二氧化氮是世界卫生组织认定的最危险的污染物之一。预测和减少污染物正在成为一项非常紧迫的任务,许多方法被用来预测它们的浓度,例如物理或机器学习模型。除了选择正确的模型之外,选择合适的特性也很关键。本文主要研究了利用双向卷积LSTM对二氧化氮浓度进行时空预测,并结合二氧化氮及其相关特征的探索,以及特征选择方法的实现。用均方根误差和平均绝对误差对所提出的方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信