Seongsoo Lee, Yeonje Cho, Seungtaek Jeong, Seokwoo Hong, Boogyo Sim, Hongseok Kim, Joungho Kim
{"title":"High Efficiency Wireless Power Transfer System using a Two-stack Hybrid Metamaterial Slab","authors":"Seongsoo Lee, Yeonje Cho, Seungtaek Jeong, Seokwoo Hong, Boogyo Sim, Hongseok Kim, Joungho Kim","doi":"10.1109/WPTC45513.2019.9055525","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a two-stack hybrid metamaterial slab to enhance the power transfer efficiency in wireless power transfer (WPT) system. A hybrid metamaterial is consist of zero magnetic permeability unit cells and negative magnetic permeability unit cells. Previous research shows that a hybrid metamaterial slab slightly enhances power transfer efficiency of WPT system. We first used a two-stack hybrid metamaterial slab and it shows considerably the enhanced power transfer efficiency compared to one hybrid metamaterial case. We verified the power transfer efficiency with S-parameter measurement. Thus, we finally achieved maximum 25.4% efficiency enhancement when the distance between Tx and Rx coils is 15 cm, and in overall distance variation cases, the proposed two-stack hybrid metamaterial slab make the power transfer efficiency increase.","PeriodicalId":148719,"journal":{"name":"2019 IEEE Wireless Power Transfer Conference (WPTC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Power Transfer Conference (WPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPTC45513.2019.9055525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we proposed a two-stack hybrid metamaterial slab to enhance the power transfer efficiency in wireless power transfer (WPT) system. A hybrid metamaterial is consist of zero magnetic permeability unit cells and negative magnetic permeability unit cells. Previous research shows that a hybrid metamaterial slab slightly enhances power transfer efficiency of WPT system. We first used a two-stack hybrid metamaterial slab and it shows considerably the enhanced power transfer efficiency compared to one hybrid metamaterial case. We verified the power transfer efficiency with S-parameter measurement. Thus, we finally achieved maximum 25.4% efficiency enhancement when the distance between Tx and Rx coils is 15 cm, and in overall distance variation cases, the proposed two-stack hybrid metamaterial slab make the power transfer efficiency increase.