Further results on Hendry's Conjecture

Manuel Lafond, Ben Seamone, R. Sherkati
{"title":"Further results on Hendry's Conjecture","authors":"Manuel Lafond, Ben Seamone, R. Sherkati","doi":"10.46298/dmtcs.6700","DOIUrl":null,"url":null,"abstract":"Recently, a conjecture due to Hendry was disproved which stated that every\nHamiltonian chordal graph is cycle extendible. Here we further explore the\nconjecture, showing that it fails to hold even when a number of extra\nconditions are imposed. In particular, we show that Hendry's Conjecture fails\nfor strongly chordal graphs, graphs with high connectivity, and if we relax the\ndefinition of \"cycle extendible\" considerably. We also consider the original\nconjecture from a subtree intersection model point of view, showing that a\nresult of Abuieda et al is nearly best possible.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.6700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, a conjecture due to Hendry was disproved which stated that every Hamiltonian chordal graph is cycle extendible. Here we further explore the conjecture, showing that it fails to hold even when a number of extra conditions are imposed. In particular, we show that Hendry's Conjecture fails for strongly chordal graphs, graphs with high connectivity, and if we relax the definition of "cycle extendible" considerably. We also consider the original conjecture from a subtree intersection model point of view, showing that a result of Abuieda et al is nearly best possible.
亨得利猜想的进一步结果
最近,一个由Hendry提出的关于哈密顿弦图是循环可拓的猜想被证明是错误的。在这里,我们进一步探讨了这一假设,表明即使施加了一些外部条件,它也不能成立。特别地,我们证明了Hendry猜想对于强弦图,具有高连通性的图,以及如果我们大大放宽“循环可拓”的定义,则不成立。我们还从子树相交模型的角度考虑了原始猜想,表明Abuieda等人的结果几乎是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信