MASS TRANSFER THROUGH FREE SURFACE BOUNDARY LAYERS USING A STATISTICAL APPROACH

Francisco Antonio Loyola Lavin, H. Schulz
{"title":"MASS TRANSFER THROUGH FREE SURFACE BOUNDARY LAYERS USING A STATISTICAL APPROACH","authors":"Francisco Antonio Loyola Lavin, H. Schulz","doi":"10.2495/MPF190081","DOIUrl":null,"url":null,"abstract":"Mass exchange through gas–liquid interfaces, whose liquid side has a turbulent nature, are still difficult to quantify due to the unclosed set of turbulence equations, which are also nonlinear. This paper describes an efficient method to overcome this difficulty, by substituting the statistical variables of the original equations by statistical relationships furnished by the Random Square Waves (RSW) tool. Oscillatory records are simplified using random square waves (ideal and binary), which allow a theoretical statistical treatment of the signals. This tool was applied to the concentration boundary layer at the gas–liquid interface. Normalized mass fluxes and mean concentration profiles were obtained using Taylor-series-based solutions, which allow for consideration of transient situations through the successive calculation of the higher order coefficients (derivatives). Comparisons with experimental data available in open literature are presented as a first evaluation of the Taylor series, showing promising results. This method is a viable tool, and this study shows novel conclusions that reproduce general tendencies observed in one-dimensional mass transfer phenomena in boundary layers.","PeriodicalId":399001,"journal":{"name":"Computational and Experimental Methods in Multiphase and Complex Flow X","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Experimental Methods in Multiphase and Complex Flow X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/MPF190081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mass exchange through gas–liquid interfaces, whose liquid side has a turbulent nature, are still difficult to quantify due to the unclosed set of turbulence equations, which are also nonlinear. This paper describes an efficient method to overcome this difficulty, by substituting the statistical variables of the original equations by statistical relationships furnished by the Random Square Waves (RSW) tool. Oscillatory records are simplified using random square waves (ideal and binary), which allow a theoretical statistical treatment of the signals. This tool was applied to the concentration boundary layer at the gas–liquid interface. Normalized mass fluxes and mean concentration profiles were obtained using Taylor-series-based solutions, which allow for consideration of transient situations through the successive calculation of the higher order coefficients (derivatives). Comparisons with experimental data available in open literature are presented as a first evaluation of the Taylor series, showing promising results. This method is a viable tool, and this study shows novel conclusions that reproduce general tendencies observed in one-dimensional mass transfer phenomena in boundary layers.
用统计方法通过自由表面边界层传质
通过气液界面进行的质量交换,其液体侧具有湍流性质,由于湍流方程的不闭合集也是非线性的,仍然难以量化。本文介绍了一种克服这一困难的有效方法,即用随机方波(RSW)工具提供的统计关系代替原方程的统计变量。振荡记录使用随机方波(理想和二进制)进行简化,这允许对信号进行理论统计处理。该工具应用于气液界面的浓度边界层。标准化的质量通量和平均浓度分布是使用基于泰勒级数的解得到的,它允许通过连续计算高阶系数(导数)来考虑瞬态情况。与开放文献中可用的实验数据进行比较,作为对泰勒级数的首次评估,显示出有希望的结果。该方法是一种可行的工具,本研究得出了新的结论,再现了在边界层一维传质现象中观察到的一般趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信