Cyclotomic numbers of order 5 over F/sub p//sup n/

Jung-Soo Chung, Young-Sik Kim, Tae-Hyung Lim, Jong-Seon No, Habong Chung
{"title":"Cyclotomic numbers of order 5 over F/sub p//sup n/","authors":"Jung-Soo Chung, Young-Sik Kim, Tae-Hyung Lim, Jong-Seon No, Habong Chung","doi":"10.1109/ISIT.2005.1523688","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the cyclotomic numbers of order 5 over an extension field F<sub>p</sub> <sup>n</sup> using the well-known results of quintic Jacobi sums over F<sub>p</sub> (B. C. Berndt, et al., 1998). For p ne 1 mod 5, we have obtained the simple closed-form expression of the cyclotomic numbers of order 5 over F<sub>p</sub> <sup>n</sup>. For p equiv 1 mod 5, we express the cyclotomic number of order 5 over F <sub>p</sub> <sup>n</sup> in terms of the solution of the diophantine system which is required to evaluate the cyclotomic number of order 5 over F<sub>p</sub> <sup>n</sup>. Using the cyclotomic numbers of order 5 over F<sub>p</sub> <sup>n</sup>, autocorrelation distributions of 5-ary Sidel'nikov sequences of period p<sup>n</sup> - 1 are also derived","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we derive the cyclotomic numbers of order 5 over an extension field Fp n using the well-known results of quintic Jacobi sums over Fp (B. C. Berndt, et al., 1998). For p ne 1 mod 5, we have obtained the simple closed-form expression of the cyclotomic numbers of order 5 over Fp n. For p equiv 1 mod 5, we express the cyclotomic number of order 5 over F p n in terms of the solution of the diophantine system which is required to evaluate the cyclotomic number of order 5 over Fp n. Using the cyclotomic numbers of order 5 over Fp n, autocorrelation distributions of 5-ary Sidel'nikov sequences of period pn - 1 are also derived
5阶分环数/ F/ p//sup n/
在本文中,我们利用著名的Fp上的五次Jacobi和的结果(b.c.b Berndt, et al., 1998),导出了扩展域Fp n上5阶的环切数。pne 1国防部5,我们获得的简单的封闭表达式分圆的数量的订单5 / Fp n。p 1国防部5枚,我们表达的割圆数量订购5 / F p n的丢番图系统的解决方案,需要评估分圆的数量的订单5 / Fp n。使用分圆的数量的订单5 / Fp n,自相关分布5-ary Sidel 'nikov pn - 1序列也派生
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信