Sparse Gaussian Process for Spatial Function Estimation with Mobile Sensor Networks

Bowen Lu, Dongbing Gu, Huosheng Hu, K. Mcdonald-Maier
{"title":"Sparse Gaussian Process for Spatial Function Estimation with Mobile Sensor Networks","authors":"Bowen Lu, Dongbing Gu, Huosheng Hu, K. Mcdonald-Maier","doi":"10.1109/EST.2012.27","DOIUrl":null,"url":null,"abstract":"Gaussian process (GP) is well researched and used in machine learning field. Comparing with artificial neural network (ANN) and support vector regression (SVR), it provides additional covariance information for regression results. By exploiting this feature, an uncertainty based locational optimisation strategy combining with an entropy based data selection method for mobile sensor networks is presented in this paper. Centroidal Voronoi tessellation (CVT) is used as a locational optimisation framework and Informative Vector Machine (IVM) is applied for data selection. Simulations with different locational optimisation criteria are conducted and the results are given, which proved the effectiveness of presented strategy.","PeriodicalId":314247,"journal":{"name":"2012 Third International Conference on Emerging Security Technologies","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Security Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gaussian process (GP) is well researched and used in machine learning field. Comparing with artificial neural network (ANN) and support vector regression (SVR), it provides additional covariance information for regression results. By exploiting this feature, an uncertainty based locational optimisation strategy combining with an entropy based data selection method for mobile sensor networks is presented in this paper. Centroidal Voronoi tessellation (CVT) is used as a locational optimisation framework and Informative Vector Machine (IVM) is applied for data selection. Simulations with different locational optimisation criteria are conducted and the results are given, which proved the effectiveness of presented strategy.
移动传感器网络空间函数估计的稀疏高斯过程
高斯过程(GP)在机器学习领域得到了广泛的研究和应用。与人工神经网络(ANN)和支持向量回归(SVR)相比,该方法为回归结果提供了额外的协方差信息。利用这一特点,提出了一种基于不确定性的移动传感器网络位置优化策略,并结合了基于熵的移动传感器网络数据选择方法。采用质心Voronoi镶嵌(CVT)作为定位优化框架,采用信息向量机(IVM)进行数据选择。采用不同的位置优化准则进行了仿真,并给出了仿真结果,验证了所提策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信