A hybrid feature selection model for text clustering

A. Alsaeedi, M. A. Fattah, Khalid S. Aloufi
{"title":"A hybrid feature selection model for text clustering","authors":"A. Alsaeedi, M. A. Fattah, Khalid S. Aloufi","doi":"10.1109/ICSENGT.2017.8123411","DOIUrl":null,"url":null,"abstract":"For text clustering task, distinctive text features selection is important due to feature space high dimensionality. It is essential to reduce the feature space dimension to increase accuracy and decrease processing time. In this work, for text clustering task, we introduce a novel hybrid feature selection model. This method measures the term importance based on the correlation coefficient among four term weighting techniques. All terms in the feature parameter vector are ranked based on this correlation coefficient score. Then low score terms are filtered out. Clustering technique is applied on the feature parameter vectors after filtering step. The proposed method results show its superiority over the traditional feature selection approaches.","PeriodicalId":350572,"journal":{"name":"2017 7th IEEE International Conference on System Engineering and Technology (ICSET)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th IEEE International Conference on System Engineering and Technology (ICSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENGT.2017.8123411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For text clustering task, distinctive text features selection is important due to feature space high dimensionality. It is essential to reduce the feature space dimension to increase accuracy and decrease processing time. In this work, for text clustering task, we introduce a novel hybrid feature selection model. This method measures the term importance based on the correlation coefficient among four term weighting techniques. All terms in the feature parameter vector are ranked based on this correlation coefficient score. Then low score terms are filtered out. Clustering technique is applied on the feature parameter vectors after filtering step. The proposed method results show its superiority over the traditional feature selection approaches.
文本聚类的混合特征选择模型
在文本聚类任务中,由于特征空间的高维性,文本特征的选择非常重要。减小特征空间维度是提高精度和缩短处理时间的关键。对于文本聚类任务,我们引入了一种新的混合特征选择模型。该方法基于四种术语加权技术之间的相关系数来度量术语的重要性。基于相关系数得分对特征参数向量中的所有项进行排序。然后过滤掉低分项。滤波后的特征参数向量采用聚类技术。结果表明,该方法优于传统的特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信