Dual-band Chiral Metasurface with Linear Asymmetric Transmission and Orthogonal Polarization Conversion over a wide Incidence Angle for Ku-band and 5G Applications
{"title":"Dual-band Chiral Metasurface with Linear Asymmetric Transmission and Orthogonal Polarization Conversion over a wide Incidence Angle for Ku-band and 5G Applications","authors":"Aisha Bibi, Muhammad Ismail Khan, Imdad Khan","doi":"10.1109/INMIC56986.2022.9972882","DOIUrl":null,"url":null,"abstract":"A bilayer, ultrathin, dual-band chiral metasurface is designed and analyzed in this paper with linear polarization conversion and asymmetric transmission for Ku-band and 5G communications. The polarization conversion efficiency of the first band (11.8-13.5 GHz) is ultra-high having a value 0.95 at 12GHz and that of the second band (26.2-26.7 GHz) is 0.9 at 25.6 GHz. The proposed structure also exhibits linear polarization asymmetric transmission in both bands with asymmetric parameters above 90% and above 80% for the first and second bands, respectively. The structure is ultrathin with respect to lowest resonating frequency of 12 GHz having thickness of 0.032λ0. Moreover, the structure is also angularly stable upto 60° for first band and upto 30° for second band, making the structure robust for practical applications. Due to scalability of the design, the proposed structure finds wide range of applications, covering a large spectrum from microwave to 5G bands.","PeriodicalId":404424,"journal":{"name":"2022 24th International Multitopic Conference (INMIC)","volume":"90 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Multitopic Conference (INMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC56986.2022.9972882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A bilayer, ultrathin, dual-band chiral metasurface is designed and analyzed in this paper with linear polarization conversion and asymmetric transmission for Ku-band and 5G communications. The polarization conversion efficiency of the first band (11.8-13.5 GHz) is ultra-high having a value 0.95 at 12GHz and that of the second band (26.2-26.7 GHz) is 0.9 at 25.6 GHz. The proposed structure also exhibits linear polarization asymmetric transmission in both bands with asymmetric parameters above 90% and above 80% for the first and second bands, respectively. The structure is ultrathin with respect to lowest resonating frequency of 12 GHz having thickness of 0.032λ0. Moreover, the structure is also angularly stable upto 60° for first band and upto 30° for second band, making the structure robust for practical applications. Due to scalability of the design, the proposed structure finds wide range of applications, covering a large spectrum from microwave to 5G bands.