Symplectic 4–manifolds, Stein domains, Seiberg–Witten theory and mapping class groups

A. Stipsicz
{"title":"Symplectic 4–manifolds, Stein domains, Seiberg–Witten theory and mapping class groups","authors":"A. Stipsicz","doi":"10.2140/GTM.2015.19.173","DOIUrl":null,"url":null,"abstract":"It is less transparent how mapping class groups are related to 4–dimensional topology. By results of Donaldson and Gompf, closed symplectic manifolds (admitting Lefschetz fibration or Lefschetz pencil structures) give rise to various objects in mapping class groups, and therefore the study of these groups has implications to 4–dimensional symplectic topology. There are also converse results; there are 4–dimensional topological theorems that have implications to mapping class group theory. For compact 4–manifolds with nonempty boundary a very similar correspondence can be set up, provided the manifolds admit Stein structures and we consider mapping class groups of surfaces with nonempty boundary.","PeriodicalId":115248,"journal":{"name":"Geometry and Topology Monographs","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry and Topology Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GTM.2015.19.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is less transparent how mapping class groups are related to 4–dimensional topology. By results of Donaldson and Gompf, closed symplectic manifolds (admitting Lefschetz fibration or Lefschetz pencil structures) give rise to various objects in mapping class groups, and therefore the study of these groups has implications to 4–dimensional symplectic topology. There are also converse results; there are 4–dimensional topological theorems that have implications to mapping class group theory. For compact 4–manifolds with nonempty boundary a very similar correspondence can be set up, provided the manifolds admit Stein structures and we consider mapping class groups of surfaces with nonempty boundary.
辛4流形,Stein定义域,Seiberg-Witten理论和映射类群
映射类组与4维拓扑的关系不太透明。根据Donaldson和Gompf的研究结果,闭辛流形(允许Lefschetz纤维或Lefschetz铅笔结构)在映射类群中产生各种对象,因此对这些群的研究具有四维辛拓扑的意义。也有相反的结果;有一些四维拓扑定理对映射类群论有启示。对于具有非空边界的紧致4 -流形,如果流形允许Stein结构并考虑具有非空边界曲面的映射类群,则可以建立一个非常相似的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信