Determining Lead-Lag Structure between Sentiment Index and Stock Price Returns

Alex Momotov, Xianghua Xie
{"title":"Determining Lead-Lag Structure between Sentiment Index and Stock Price Returns","authors":"Alex Momotov, Xianghua Xie","doi":"10.1145/3387168.3389115","DOIUrl":null,"url":null,"abstract":"This research contrasts and compares the state-of-the-art techniques of the two approaches within the domain of news sentiment analysis, as well as, investigates a novel document encoding representation of the 'TF-IDF momentum matrix'. The presented lexicon-based methodology is centred around Loughran & McDonald financial sentiment word lists and reaches 86.4% explained stock momentum variance, whereas the classification approach follows a thematic analysis pipeline implementing Latent Dirichlet Allocation and achieves that of 94.8%. As an additional element of model evaluation, the research implements Thermal Optimal Path method which relies on a dynamic programming approach for performance optimisation.","PeriodicalId":346739,"journal":{"name":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387168.3389115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research contrasts and compares the state-of-the-art techniques of the two approaches within the domain of news sentiment analysis, as well as, investigates a novel document encoding representation of the 'TF-IDF momentum matrix'. The presented lexicon-based methodology is centred around Loughran & McDonald financial sentiment word lists and reaches 86.4% explained stock momentum variance, whereas the classification approach follows a thematic analysis pipeline implementing Latent Dirichlet Allocation and achieves that of 94.8%. As an additional element of model evaluation, the research implements Thermal Optimal Path method which relies on a dynamic programming approach for performance optimisation.
确定情绪指数与股价收益的超前-滞后结构
本研究对比和比较了新闻情感分析领域内两种方法的最新技术,并研究了一种新的“TF-IDF动量矩阵”的文档编码表示。所提出的基于词典的方法以Loughran & McDonald金融情绪词表为中心,达到86.4%的解释股票动量方差,而分类方法遵循实施潜在狄利克雷分配的主题分析管道,达到94.8%。作为模型评估的附加元素,研究实现了热最优路径方法,该方法依赖于动态规划方法进行性能优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信