{"title":"Determining Lead-Lag Structure between Sentiment Index and Stock Price Returns","authors":"Alex Momotov, Xianghua Xie","doi":"10.1145/3387168.3389115","DOIUrl":null,"url":null,"abstract":"This research contrasts and compares the state-of-the-art techniques of the two approaches within the domain of news sentiment analysis, as well as, investigates a novel document encoding representation of the 'TF-IDF momentum matrix'. The presented lexicon-based methodology is centred around Loughran & McDonald financial sentiment word lists and reaches 86.4% explained stock momentum variance, whereas the classification approach follows a thematic analysis pipeline implementing Latent Dirichlet Allocation and achieves that of 94.8%. As an additional element of model evaluation, the research implements Thermal Optimal Path method which relies on a dynamic programming approach for performance optimisation.","PeriodicalId":346739,"journal":{"name":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387168.3389115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research contrasts and compares the state-of-the-art techniques of the two approaches within the domain of news sentiment analysis, as well as, investigates a novel document encoding representation of the 'TF-IDF momentum matrix'. The presented lexicon-based methodology is centred around Loughran & McDonald financial sentiment word lists and reaches 86.4% explained stock momentum variance, whereas the classification approach follows a thematic analysis pipeline implementing Latent Dirichlet Allocation and achieves that of 94.8%. As an additional element of model evaluation, the research implements Thermal Optimal Path method which relies on a dynamic programming approach for performance optimisation.