Handling missing attributes using matrix factorization

Övünç Bozcan, A. Bener
{"title":"Handling missing attributes using matrix factorization","authors":"Övünç Bozcan, A. Bener","doi":"10.1109/RAISE.2013.6615204","DOIUrl":null,"url":null,"abstract":"Predictive models that use machine learning techniques has been useful tools to guide software project managers in making decisions under uncertainty. However in practice collecting metrics or defect data has been a troublesome job and researchers often have to deal with incomplete datasets in their studies. As a result both researchers and practitioners shy away from implementing such models. Missing data is a common problem in other domains to build recommender systems. We believe that the techniques used to overcome missing data problem in other domains can also be employed in software engineering. In this paper we propose Matrix Factorization algorithm to tackle with missing data problem in building predictive models in software development domain.","PeriodicalId":183132,"journal":{"name":"2013 2nd International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAISE.2013.6615204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predictive models that use machine learning techniques has been useful tools to guide software project managers in making decisions under uncertainty. However in practice collecting metrics or defect data has been a troublesome job and researchers often have to deal with incomplete datasets in their studies. As a result both researchers and practitioners shy away from implementing such models. Missing data is a common problem in other domains to build recommender systems. We believe that the techniques used to overcome missing data problem in other domains can also be employed in software engineering. In this paper we propose Matrix Factorization algorithm to tackle with missing data problem in building predictive models in software development domain.
使用矩阵分解处理缺失的属性
使用机器学习技术的预测模型已经成为指导软件项目经理在不确定情况下做出决策的有用工具。然而,在实践中,收集度量或缺陷数据一直是一项麻烦的工作,研究人员在研究中经常需要处理不完整的数据集。因此,研究人员和实践者都回避实现这样的模型。在构建推荐系统的其他领域中,数据缺失是一个常见的问题。我们相信,用于克服其他领域数据缺失问题的技术也可以应用于软件工程。本文提出了矩阵分解算法来解决软件开发领域预测模型构建中的数据缺失问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信