CrossFlow: Interpolando Dados Pluviométricos com Apoio de Validação Cruzada em Workflows Científicos

Ulisses Tomaz, E. Santos, G. B. Lyra, Sérgio Manuel Serra da Cruz
{"title":"CrossFlow: Interpolando Dados Pluviométricos com Apoio de Validação Cruzada em Workflows Científicos","authors":"Ulisses Tomaz, E. Santos, G. B. Lyra, Sérgio Manuel Serra da Cruz","doi":"10.5753/bresci.2017.9917","DOIUrl":null,"url":null,"abstract":"Os estudos de eventos atmosféricos extremos são importantes para a sociedade em geral. A chuva, tendo a altura pluviométrica como principal variável, insere-se neste contexto. Os dados pluviométricos brutos muitas vezes apresentam-se como longas séries que contém erros e falhas. Essas condições representam um desafio para a análise de padrões e predição de eventos. Esse trabalho apresenta uma abordagem inédita baseada em workflows científicos que conjugam quatro métodos de interpolação e de cruzamento de dados para o preenchimento de falhas nas séries históricas. Nossos experimentos utilizaram dezenas de estações no estado do Rio de Janeiro em um período de 75 anos e produziram análises e dados curados de alta qualidade e livres de falhas.","PeriodicalId":306675,"journal":{"name":"Anais do Brazilian e-Science Workshop (BreSci)","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Brazilian e-Science Workshop (BreSci)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/bresci.2017.9917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Os estudos de eventos atmosféricos extremos são importantes para a sociedade em geral. A chuva, tendo a altura pluviométrica como principal variável, insere-se neste contexto. Os dados pluviométricos brutos muitas vezes apresentam-se como longas séries que contém erros e falhas. Essas condições representam um desafio para a análise de padrões e predição de eventos. Esse trabalho apresenta uma abordagem inédita baseada em workflows científicos que conjugam quatro métodos de interpolação e de cruzamento de dados para o preenchimento de falhas nas séries históricas. Nossos experimentos utilizaram dezenas de estações no estado do Rio de Janeiro em um período de 75 anos e produziram análises e dados curados de alta qualidade e livres de falhas.
交叉流:插值降雨数据,支持科学工作流程中的交叉验证
研究极端天气事件对社会是很重要的。雨,雨为主要变量的时候,是在这样的环境下。总降雨量数据通常表现为包含误差和失败的长序列。这些条件是一个挑战模式为分析和预测的事件。这项工作提供了一个前所未有的基于科学工作流的方法,结合四种插值方法和数据交换的历史典籍漏洞的补充。我们的实验用几十个站在里约热内卢州在75年,研制了高质量的数据分析和治疗失败和自由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信