FPGA Prototyping of Systolic Array-based Accelerator for Low-Precision Inference of Deep Neural Networks

Soobeom Kim, Seunghwan Cho, Eunhyeok Park, S. Yoo
{"title":"FPGA Prototyping of Systolic Array-based Accelerator for Low-Precision Inference of Deep Neural Networks","authors":"Soobeom Kim, Seunghwan Cho, Eunhyeok Park, S. Yoo","doi":"10.1109/rsp53691.2021.9806200","DOIUrl":null,"url":null,"abstract":"In this study, we aim to design an energy-efficient computation system for deep neural networks on edge devices. To maximize energy efficiency, we design a novel hardware accelerator that supports low-precision computation and sparsity-aware structured zero-skipping on top of the well-known systolic-array structure. In addition, we introduce a full-stack software platform, including a model optimizer, instruction compiler, and host interface, to translate the pre-trained PyTorch model to the proposed accelerator and orchestrate it automatically. We validate the entire system by prototyping the accelerator on the Xilinx Alveo U250 FPGA board and demonstrating the inference of the 4-bit ResNet-50 model through the software stack. According to our experiment, our platform shows 317 GOPS inference speed and 51.96 GOPS/W energy efficiency for ResNet-50 on Xilinx Alveo U250 FPGA at 108 MHz, which is comparable to the advanced commercial acceleration system in terms of energy efficiency.","PeriodicalId":229411,"journal":{"name":"2021 IEEE International Workshop on Rapid System Prototyping (RSP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Workshop on Rapid System Prototyping (RSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rsp53691.2021.9806200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we aim to design an energy-efficient computation system for deep neural networks on edge devices. To maximize energy efficiency, we design a novel hardware accelerator that supports low-precision computation and sparsity-aware structured zero-skipping on top of the well-known systolic-array structure. In addition, we introduce a full-stack software platform, including a model optimizer, instruction compiler, and host interface, to translate the pre-trained PyTorch model to the proposed accelerator and orchestrate it automatically. We validate the entire system by prototyping the accelerator on the Xilinx Alveo U250 FPGA board and demonstrating the inference of the 4-bit ResNet-50 model through the software stack. According to our experiment, our platform shows 317 GOPS inference speed and 51.96 GOPS/W energy efficiency for ResNet-50 on Xilinx Alveo U250 FPGA at 108 MHz, which is comparable to the advanced commercial acceleration system in terms of energy efficiency.
基于收缩阵列的深度神经网络低精度推理加速器的FPGA原型设计
在本研究中,我们的目标是为边缘设备上的深度神经网络设计一个节能的计算系统。为了最大限度地提高能源效率,我们设计了一种新颖的硬件加速器,该加速器支持低精度计算和稀疏感知的结构化零跳跃。此外,我们还引入了一个全栈软件平台,包括模型优化器、指令编译器和主机接口,以将预训练的PyTorch模型转换为提议的加速器并自动编排。我们在Xilinx Alveo U250 FPGA板上对加速器进行了原型设计,并通过软件堆栈演示了4位ResNet-50模型的推理,从而验证了整个系统。根据我们的实验,我们的平台在Xilinx Alveo U250 FPGA上,在108 MHz下,ResNet-50的推理速度为317 GOPS/W,能效为51.96 GOPS/W,在能效方面与先进的商用加速系统相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信