Neural context embeddings for automatic discovery of word senses

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1504
Mikael Kågebäck, Fredrik D. Johansson, Richard Johansson, Devdatt P. Dubhashi
{"title":"Neural context embeddings for automatic discovery of word senses","authors":"Mikael Kågebäck, Fredrik D. Johansson, Richard Johansson, Devdatt P. Dubhashi","doi":"10.3115/v1/W15-1504","DOIUrl":null,"url":null,"abstract":"Word sense induction (WSI) is the problem of \nautomatically building an inventory of senses \nfor a set of target words using only a text \ncorpus. We introduce a new method for embedding word instances and their context, for use in WSI. The method, Instance-context embedding (ICE), leverages neural word embeddings, and the correlation statistics they capture, to compute high quality embeddings of word contexts. In WSI, these context embeddings are clustered to find the word senses present in the text. ICE is based on a novel method for combining word embeddings using continuous Skip-gram, based on both se- \nmantic and a temporal aspects of context \nwords. ICE is evaluated both in a new system, and in an extension to a previous system \nfor WSI. In both cases, we surpass previous \nstate-of-the-art, on the WSI task of SemEval-2013, which highlights the generality of ICE. Our proposed system achieves a 33% relative improvement.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Word sense induction (WSI) is the problem of automatically building an inventory of senses for a set of target words using only a text corpus. We introduce a new method for embedding word instances and their context, for use in WSI. The method, Instance-context embedding (ICE), leverages neural word embeddings, and the correlation statistics they capture, to compute high quality embeddings of word contexts. In WSI, these context embeddings are clustered to find the word senses present in the text. ICE is based on a novel method for combining word embeddings using continuous Skip-gram, based on both se- mantic and a temporal aspects of context words. ICE is evaluated both in a new system, and in an extension to a previous system for WSI. In both cases, we surpass previous state-of-the-art, on the WSI task of SemEval-2013, which highlights the generality of ICE. Our proposed system achieves a 33% relative improvement.
自动发现词义的神经上下文嵌入
词义归纳(WSI)是仅使用文本语料库自动为一组目标词建立词义清单的问题。我们介绍了一种新的嵌入词实例及其上下文的方法,用于WSI。实例-上下文嵌入(ICE)方法利用神经词嵌入及其捕获的相关统计信息来计算高质量的词上下文嵌入。在WSI中,这些上下文嵌入被聚类以找到文本中存在的词义。ICE是基于一种基于上下文词的语义和时间方面的连续跳跃图组合词嵌入的新方法。ICE在一个新系统中进行评估,并在以前的WSI系统的扩展中进行评估。在这两种情况下,我们都超越了以前最先进的技术,在SemEval-2013的WSI任务上,这突出了ICE的普遍性。我们提出的系统实现了33%的相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信