Local conditional regularity for the Landau equation with Coulomb potential

Immanuel Ben Porat
{"title":"Local conditional regularity for the Landau equation with Coulomb potential","authors":"Immanuel Ben Porat","doi":"10.3934/krm.2022010","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space <inline-formula><tex-math id=\"M1\">\\begin{document}$ L_{t}^{\\infty}L_{v}^{q} $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M2\">\\begin{document}$ q>3 $\\end{document}</tex-math></inline-formula> in an open cylinder <inline-formula><tex-math id=\"M3\">\\begin{document}$ (0,S)\\times B $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M4\">\\begin{document}$ B $\\end{document}</tex-math></inline-formula> is an open ball of <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathbb{R}^{3} $\\end{document}</tex-math></inline-formula>, must have Hölder continuous second order derivatives in the velocity variables, and first order derivative in the time variable locally in any compact subset of that cylinder.</p>","PeriodicalId":393586,"journal":{"name":"Kinetic &amp; Related Models","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic &amp; Related Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/krm.2022010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space \begin{document}$ L_{t}^{\infty}L_{v}^{q} $\end{document} with \begin{document}$ q>3 $\end{document} in an open cylinder \begin{document}$ (0,S)\times B $\end{document}, where \begin{document}$ B $\end{document} is an open ball of \begin{document}$ \mathbb{R}^{3} $\end{document}, must have Hölder continuous second order derivatives in the velocity variables, and first order derivative in the time variable locally in any compact subset of that cylinder.

具有库仑势的朗道方程的局部条件正则性
This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space \begin{document}$ L_{t}^{\infty}L_{v}^{q} $\end{document} with \begin{document}$ q>3 $\end{document} in an open cylinder \begin{document}$ (0,S)\times B $\end{document}, where \begin{document}$ B $\end{document} is an open ball of \begin{document}$ \mathbb{R}^{3} $\end{document}, must have Hölder continuous second order derivatives in the velocity variables, and first order derivative in the time variable locally in any compact subset of that cylinder.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信