Multi-View Contrastive Learning from Demonstrations

André Rosa de Sousa Porfírio Correia, L. Alexandre
{"title":"Multi-View Contrastive Learning from Demonstrations","authors":"André Rosa de Sousa Porfírio Correia, L. Alexandre","doi":"10.1109/IRC55401.2022.00067","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for learning visual representations from unlabeled video demonstrations captured from multiple viewpoints. We show that these representations are applicable for imitating robotic tasks. We use contrastive learning to enhance task-relevant information while suppressing irrelevant information in the feature embeddings. We validate the proposed method on the publicly available Multi-View Pouring and a custom Pick and Place data sets and compare it with the TCN and CMC baselines. We evaluate the learned representations using three metrics: viewpoint alignment, stage classification and reinforcement learning. In all cases, the results improve when compared to state-of-the-art approaches.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a framework for learning visual representations from unlabeled video demonstrations captured from multiple viewpoints. We show that these representations are applicable for imitating robotic tasks. We use contrastive learning to enhance task-relevant information while suppressing irrelevant information in the feature embeddings. We validate the proposed method on the publicly available Multi-View Pouring and a custom Pick and Place data sets and compare it with the TCN and CMC baselines. We evaluate the learned representations using three metrics: viewpoint alignment, stage classification and reinforcement learning. In all cases, the results improve when compared to state-of-the-art approaches.
从示范中进行多视角对比学习
本文提出了一个从多个视点捕获的未标记视频演示中学习视觉表示的框架。我们证明这些表征适用于模仿机器人任务。我们使用对比学习来增强任务相关信息,同时抑制特征嵌入中的不相关信息。我们在公开可用的多视图浇注和自定义取放数据集上验证了所提出的方法,并将其与TCN和CMC基线进行了比较。我们使用三个度量来评估学习到的表示:视点对齐、阶段分类和强化学习。在所有情况下,与最先进的方法相比,结果都有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信