Validating Ontology-based Annotations of Biomedical Resources using Zero-shot Learning

Dimitrios A. Koutsomitropoulos
{"title":"Validating Ontology-based Annotations of Biomedical Resources using Zero-shot Learning","authors":"Dimitrios A. Koutsomitropoulos","doi":"10.1145/3486713.3486730","DOIUrl":null,"url":null,"abstract":"Authoritative thesauri in the form of web ontologies offer a sound representation of domain knowledge and can act as a reference point for automated semantic tagging. On the other hand, current language models achieve to capture contextualized semantics of text corpora and can be leveraged towards this goal. We present an approach for injecting subject annotations using query term expansion against such ontologies in the biomedical domain. For the user to have an indication of the usefulness of these suggestions we further propose an online method for validating the quality of annotations using NLI models such as BART and XLM-R. To circumvent training barriers posed by very large label sets and scarcity of data we rely on zero-shot classification and show that semantic matching can contribute above-average thematic annotations. Also, a web-based validation service can be attractive for human curators vs. the overhead of pretraining large, domain-tailored classification models.","PeriodicalId":268366,"journal":{"name":"The 12th International Conference on Computational Systems-Biology and Bioinformatics","volume":"543 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486713.3486730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Authoritative thesauri in the form of web ontologies offer a sound representation of domain knowledge and can act as a reference point for automated semantic tagging. On the other hand, current language models achieve to capture contextualized semantics of text corpora and can be leveraged towards this goal. We present an approach for injecting subject annotations using query term expansion against such ontologies in the biomedical domain. For the user to have an indication of the usefulness of these suggestions we further propose an online method for validating the quality of annotations using NLI models such as BART and XLM-R. To circumvent training barriers posed by very large label sets and scarcity of data we rely on zero-shot classification and show that semantic matching can contribute above-average thematic annotations. Also, a web-based validation service can be attractive for human curators vs. the overhead of pretraining large, domain-tailored classification models.
使用零学习验证基于本体的生物医学资源注释
web本体形式的权威词典提供了领域知识的良好表示,可以作为自动语义标记的参考点。另一方面,现有的语言模型实现了对文本语料库的语境化语义的捕获,可以用来实现这一目标。在生物医学领域,我们提出了一种使用查询词扩展来注入主题注释的方法。为了使用户了解这些建议的有用性,我们进一步提出了一种在线方法,用于使用NLI模型(如BART和XLM-R)验证注释的质量。为了规避由非常大的标签集和数据稀缺造成的训练障碍,我们依赖于零射击分类,并表明语义匹配可以贡献高于平均水平的主题注释。此外,基于web的验证服务相对于预训练大型、领域定制的分类模型的开销,对人类管理员更有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信