Extremal digraphs on Meyniel-type condition for hamiltonian cycles in balanced bipartite digraphs

Ruixia Wang, Linxin Wu, Wei Meng
{"title":"Extremal digraphs on Meyniel-type condition for hamiltonian cycles in balanced bipartite digraphs","authors":"Ruixia Wang, Linxin Wu, Wei Meng","doi":"10.46298/dmtcs.5851","DOIUrl":null,"url":null,"abstract":"Let $D$ be a strong balanced digraph on $2a$ vertices. Adamus et al. have\nproved that $D$ is hamiltonian if $d(u)+d(v)\\ge 3a$ whenever $uv\\notin A(D)$\nand $vu\\notin A(D)$. The lower bound $3a$ is tight. In this paper, we shall\nshow that the extremal digraph on this condition is two classes of digraphs\nthat can be clearly characterized. Moreover, we also show that if\n$d(u)+d(v)\\geq 3a-1$ whenever $uv\\notin A(D)$ and $vu\\notin A(D)$, then $D$ is\ntraceable. The lower bound $3a-1$ is tight.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.5851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let $D$ be a strong balanced digraph on $2a$ vertices. Adamus et al. have proved that $D$ is hamiltonian if $d(u)+d(v)\ge 3a$ whenever $uv\notin A(D)$ and $vu\notin A(D)$. The lower bound $3a$ is tight. In this paper, we shall show that the extremal digraph on this condition is two classes of digraphs that can be clearly characterized. Moreover, we also show that if $d(u)+d(v)\geq 3a-1$ whenever $uv\notin A(D)$ and $vu\notin A(D)$, then $D$ is traceable. The lower bound $3a-1$ is tight.
平衡二部有向图中哈密顿环的meyniel型极值有向图
设$D$为$2a$顶点上的强平衡有向图。Adamus等人已经证明$D$是哈密顿量,如果$d(u)+d(v)\ge 3a$无论$uv\notin A(D)$和$vu\notin A(D)$。下界$3a$很紧。在本文中,我们将证明在这种条件下的极值有向图是两类可以被清晰表征的有向图。此外,我们还表明,如果$d(u)+d(v)\geq 3a-1$每当$uv\notin A(D)$和$vu\notin A(D)$,那么$D$是可追溯的。下界$3a-1$很紧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信