Labeling Custom Indoor Point Clouds Through 2D Semantic Image Segmentation

Shayan Ahmed, J. Gedschold, Tim Erich Wegner, Adrian Sode, J. Trabert, G. D. Galdo
{"title":"Labeling Custom Indoor Point Clouds Through 2D Semantic Image Segmentation","authors":"Shayan Ahmed, J. Gedschold, Tim Erich Wegner, Adrian Sode, J. Trabert, G. D. Galdo","doi":"10.1109/IRC55401.2022.00050","DOIUrl":null,"url":null,"abstract":"For effective Computer Vision (CV) applications, one of the difficult challenges service robots have to face concerns with complete scene understanding. Therefore, various strategies are employed for point-level segregation of the 3D scene, such as semantic segmentation. Currently Deep Learning (DL) based algorithms are popular in this domain. However, they require precisely labeled ground truth data. Generating this data is a lengthy and expensive procedure, resulting in a limited variety of available data. On the contrary, the 2D image domain offers labeled data in abundance. Therefore, this study explores how we can achieve accurate labels for the 3D domain by utilizing semantic segmentation on 2D images and projecting the estimated labels to the 3D space via the depth channel. The labeled data may then be used for vision related tasks such as robot navigation or localization.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For effective Computer Vision (CV) applications, one of the difficult challenges service robots have to face concerns with complete scene understanding. Therefore, various strategies are employed for point-level segregation of the 3D scene, such as semantic segmentation. Currently Deep Learning (DL) based algorithms are popular in this domain. However, they require precisely labeled ground truth data. Generating this data is a lengthy and expensive procedure, resulting in a limited variety of available data. On the contrary, the 2D image domain offers labeled data in abundance. Therefore, this study explores how we can achieve accurate labels for the 3D domain by utilizing semantic segmentation on 2D images and projecting the estimated labels to the 3D space via the depth channel. The labeled data may then be used for vision related tasks such as robot navigation or localization.
通过二维语义图像分割标记自定义室内点云
对于有效的计算机视觉(CV)应用,服务机器人必须面对的困难挑战之一是完整的场景理解。因此,三维场景的点级分离采用了多种策略,如语义分割。目前,基于深度学习(DL)的算法在该领域非常流行。然而,它们需要精确标记的地面真值数据。生成这些数据是一个漫长而昂贵的过程,导致可用数据的种类有限。相反,二维图像域提供了丰富的标记数据。因此,本研究探讨了如何利用二维图像的语义分割,并通过深度通道将估计的标签投影到三维空间,从而实现3D领域的准确标签。然后,标记的数据可以用于与视觉相关的任务,例如机器人导航或定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信