Sentiment Flow for Video Interestingness Prediction

Sejong Yoon, V. Pavlovic
{"title":"Sentiment Flow for Video Interestingness Prediction","authors":"Sejong Yoon, V. Pavlovic","doi":"10.1145/2660505.2660513","DOIUrl":null,"url":null,"abstract":"Computational analysis and prediction of digital media interestingness is a challenging task, largely driven by subjective nature of interestingness. Several attempts were made to construct a reliable measure and obtain a better understanding of interestingness based on various psychological study results. However, most current works focus on interestingness prediction for images. While the video affective analysis has been studied for quite some time, there are few works that explictly try to predict interestingness of videos. In this work, we extend a recent pilot study on the video interestingness prediction by using a mid-level representation of sentiment (emotion) sequence. We evaluate our proposed framework on three datasets including the datasets proposed by the pilot study and show that the result effectively verifies a promising utility of the approach.","PeriodicalId":434817,"journal":{"name":"HuEvent '14","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HuEvent '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2660505.2660513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Computational analysis and prediction of digital media interestingness is a challenging task, largely driven by subjective nature of interestingness. Several attempts were made to construct a reliable measure and obtain a better understanding of interestingness based on various psychological study results. However, most current works focus on interestingness prediction for images. While the video affective analysis has been studied for quite some time, there are few works that explictly try to predict interestingness of videos. In this work, we extend a recent pilot study on the video interestingness prediction by using a mid-level representation of sentiment (emotion) sequence. We evaluate our proposed framework on three datasets including the datasets proposed by the pilot study and show that the result effectively verifies a promising utility of the approach.
视频趣味性预测的情感流
数字媒体趣味性的计算分析和预测是一项具有挑战性的任务,很大程度上是由趣味性的主观性所驱动的。基于不同的心理学研究结果,我们尝试构建一个可靠的测量方法来更好地理解兴趣。然而,目前大多数研究都集中在图像的兴趣预测上。虽然视频情感分析已经研究了很长一段时间,但很少有作品明确地尝试预测视频的趣味性。在这项工作中,我们通过使用情感(情感)序列的中级表示扩展了最近关于视频趣味性预测的试点研究。我们在包括试点研究提出的数据集在内的三个数据集上评估了我们提出的框架,并表明结果有效地验证了该方法的有前途的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信