OpenNIG - Open Neural Image Generator

Andrei-Marius Avram, Luciana Morogan, Stefan-Adrian Toma
{"title":"OpenNIG - Open Neural Image Generator","authors":"Andrei-Marius Avram, Luciana Morogan, Stefan-Adrian Toma","doi":"10.1109/COMM48946.2020.9142009","DOIUrl":null,"url":null,"abstract":"Generative models are statistical models that learn a true underlying data distribution from samples using unsupervised learning, aiming to generate new data points with some variation. In this paper, we introduce OpenNIG (Open Neural Image Generator), an open-source neural networks toolkit for image generation. It offers the possibility to easily train, validate and test state of the art models. The framework also contains a module that enables the user to directly download and process some of the most common databases used in deep learning. OpenNIG is freely available via GitHub.","PeriodicalId":405841,"journal":{"name":"2020 13th International Conference on Communications (COMM)","volume":"529 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMM48946.2020.9142009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative models are statistical models that learn a true underlying data distribution from samples using unsupervised learning, aiming to generate new data points with some variation. In this paper, we introduce OpenNIG (Open Neural Image Generator), an open-source neural networks toolkit for image generation. It offers the possibility to easily train, validate and test state of the art models. The framework also contains a module that enables the user to directly download and process some of the most common databases used in deep learning. OpenNIG is freely available via GitHub.
开放神经图像生成器
生成模型是一种统计模型,它使用无监督学习从样本中学习真实的底层数据分布,旨在生成具有一些变化的新数据点。在本文中,我们介绍了OpenNIG(开放神经图像生成器),一个用于图像生成的开源神经网络工具包。它提供了轻松训练、验证和测试先进模型状态的可能性。该框架还包含一个模块,使用户可以直接下载和处理深度学习中使用的一些最常见的数据库。OpenNIG可以通过GitHub免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信