A Study on Parameter Sensitivity Analysis of the Virus Spread Optimization

Zhixi Li, V. Tam, K. Yeung
{"title":"A Study on Parameter Sensitivity Analysis of the Virus Spread Optimization","authors":"Zhixi Li, V. Tam, K. Yeung","doi":"10.1109/SSCI47803.2020.9308167","DOIUrl":null,"url":null,"abstract":"The virus spread optimization (VSO) is a radically new metaheuristic optimization algorithm to mimic the viral behavior and spread of viruses for continuous optimization. Due to the multiple search strategies design, the VSO achieves an excellent performance on a series of well-known benchmark functions in terms of the solution quality, convergence rate and stability. Yet the number of control parameters involved in the VSO algorithm is relatively larger than those of other popular metaheuristics such as genetic algorithm (GA) and particle swarm optimization (PSO). Besides, there is rarely any study on the possible impact of such parameters on the performance of the VSO as based on the default parameter settings when compared to those of other metaheuristics. In this work, the parameter sensitivity of the VSO is carefully examined by performing a suite of experiments. More importantly, the rules of thumb for the parameter tuning of the VSO is also considered. Essentially, this work reveals the impact of the parameters contributing to the success of the VSO to boost the research of this promising optimization algorithm.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The virus spread optimization (VSO) is a radically new metaheuristic optimization algorithm to mimic the viral behavior and spread of viruses for continuous optimization. Due to the multiple search strategies design, the VSO achieves an excellent performance on a series of well-known benchmark functions in terms of the solution quality, convergence rate and stability. Yet the number of control parameters involved in the VSO algorithm is relatively larger than those of other popular metaheuristics such as genetic algorithm (GA) and particle swarm optimization (PSO). Besides, there is rarely any study on the possible impact of such parameters on the performance of the VSO as based on the default parameter settings when compared to those of other metaheuristics. In this work, the parameter sensitivity of the VSO is carefully examined by performing a suite of experiments. More importantly, the rules of thumb for the parameter tuning of the VSO is also considered. Essentially, this work reveals the impact of the parameters contributing to the success of the VSO to boost the research of this promising optimization algorithm.
病毒传播优化的参数敏感性分析研究
病毒传播优化(VSO)是一种全新的元启发式优化算法,用于模拟病毒的行为和传播,以实现持续优化。由于采用了多种搜索策略设计,使得VSO在求解质量、收敛速度和稳定性等方面对一系列知名的基准函数都取得了优异的性能。然而,与遗传算法(GA)和粒子群优化(PSO)等其他流行的元启发式算法相比,VSO算法所涉及的控制参数数量相对较大。此外,与其他元启发式方法相比,很少有研究基于默认参数设置的这些参数对VSO性能可能产生的影响。在这项工作中,通过执行一套实验,仔细检查了VSO的参数灵敏度。更重要的是,还考虑了VSO参数调优的经验法则。从本质上讲,这项工作揭示了参数对VSO成功的影响,从而推动了这一有前途的优化算法的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信