{"title":"On reliable control system designs with and without feedback reconfigurations","authors":"J. Birdwell, D. Castañón, M. Athans","doi":"10.1109/CDC.1978.267960","DOIUrl":null,"url":null,"abstract":"This paper contains an overview of a theoretical framework for the design of reliable multivariable control systems, with special emphasis on actuator failures and necessary actuator redundancy levels. Using a linear model of the system, with Markovian failure probabilities and quadratic performance index, an optimal stochastic control problem is posed and solved. The solution requires the iteration of a set of highly coupled Riccati-like matrix difference equations; if these converge one has a reliable design; if they diverge, the design is unreliable, and the system design cannot be stabilized. In addition, it is shown that the existence of a stabilizing constant feedback gain and the reliability of its implementation is equivalent to the convergence properties of a set of coupled Riccati-like matrix difference equations. In summary, these results can be used for off-line studies relating the open loop dynamics, required performance, actuator mean time to failure, and functional or identical actuator redundancy, with and without feedback gain reconfiguration strategies.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1978.267960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
This paper contains an overview of a theoretical framework for the design of reliable multivariable control systems, with special emphasis on actuator failures and necessary actuator redundancy levels. Using a linear model of the system, with Markovian failure probabilities and quadratic performance index, an optimal stochastic control problem is posed and solved. The solution requires the iteration of a set of highly coupled Riccati-like matrix difference equations; if these converge one has a reliable design; if they diverge, the design is unreliable, and the system design cannot be stabilized. In addition, it is shown that the existence of a stabilizing constant feedback gain and the reliability of its implementation is equivalent to the convergence properties of a set of coupled Riccati-like matrix difference equations. In summary, these results can be used for off-line studies relating the open loop dynamics, required performance, actuator mean time to failure, and functional or identical actuator redundancy, with and without feedback gain reconfiguration strategies.