VGGreNet: A Light-Weight VGGNet with Reused Convolutional Set

Ka‐Hou Chan, S. Im, W. Ke
{"title":"VGGreNet: A Light-Weight VGGNet with Reused Convolutional Set","authors":"Ka‐Hou Chan, S. Im, W. Ke","doi":"10.1109/UCC48980.2020.00068","DOIUrl":null,"url":null,"abstract":"This article introduces a light-weight VGGNet for deeper neural networks. In our model, we present a reusable convolution set that is designed to capture as much information as possible until the feature size is reduced to 1. The use of reusable layers for convolution can ensure the convergence without using a pre-trained model, and can greatly reduce the number of training parameters. Since these can be about 22.0% of the VGGNet, this leads to a reduction in memory consumption and faster convergence. As a result, the proposed model can improve the accuracy of testing. Moreover, the design and implementation can be easily deployed in the CNN approach related to the VGGNet model.","PeriodicalId":125849,"journal":{"name":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC48980.2020.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This article introduces a light-weight VGGNet for deeper neural networks. In our model, we present a reusable convolution set that is designed to capture as much information as possible until the feature size is reduced to 1. The use of reusable layers for convolution can ensure the convergence without using a pre-trained model, and can greatly reduce the number of training parameters. Since these can be about 22.0% of the VGGNet, this leads to a reduction in memory consumption and faster convergence. As a result, the proposed model can improve the accuracy of testing. Moreover, the design and implementation can be easily deployed in the CNN approach related to the VGGNet model.
基于复用卷积集的轻量级VGGNet
本文介绍了一种用于深度神经网络的轻量级VGGNet。在我们的模型中,我们提出了一个可重用的卷积集,旨在捕获尽可能多的信息,直到特征大小减少到1。使用可重用层进行卷积可以在不使用预训练模型的情况下保证卷积的收敛性,并且可以大大减少训练参数的数量。由于这些可以占到VGGNet的22.0%左右,因此可以减少内存消耗并加快收敛速度。结果表明,该模型可以提高测试的准确性。此外,设计和实现可以很容易地部署在与VGGNet模型相关的CNN方法中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信