Study of Particle Swarm Optimization Parameter Tuning for Camera Calibration

Kitbodin To.sriwong, Sukritta Paripurana, P. Vanichchanunt
{"title":"Study of Particle Swarm Optimization Parameter Tuning for Camera Calibration","authors":"Kitbodin To.sriwong, Sukritta Paripurana, P. Vanichchanunt","doi":"10.1109/ITC-CSCC58803.2023.10212796","DOIUrl":null,"url":null,"abstract":"This paper aims to study Particle Swarm Optimization (PSO) parameter tuning for estimating intrinsic camera parameters. The parameters of typical PSO, on which tuning is mainly focused, include inertia weight and acceleration coefficients. These parameters need to be addressed to how they highly affect the estimation error of PSO by extensively exploring them. The results of this study illustrate their effects so that the proper selection of these parameters can be performed to obtain the achievable best solution.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to study Particle Swarm Optimization (PSO) parameter tuning for estimating intrinsic camera parameters. The parameters of typical PSO, on which tuning is mainly focused, include inertia weight and acceleration coefficients. These parameters need to be addressed to how they highly affect the estimation error of PSO by extensively exploring them. The results of this study illustrate their effects so that the proper selection of these parameters can be performed to obtain the achievable best solution.
基于粒子群优化的摄像机标定参数整定方法研究
本文研究了用粒子群算法(PSO)估计相机内禀参数的参数整定方法。典型粒子群的参数包括惯性权重和加速度系数,是整定的重点。需要通过对这些参数的广泛研究来解决它们对粒子群估计误差的影响。本研究的结果说明了它们的影响,以便正确选择这些参数以获得可实现的最佳解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信