Partial double precision with residue retention: a new approach to solving differential equations on microprocessors

G. McCrea, I. Witten
{"title":"Partial double precision with residue retention: a new approach to solving differential equations on microprocessors","authors":"G. McCrea, I. Witten","doi":"10.1049/IJ-CDT:19790021","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of partial double and triple precision with residue retention as a new arithmetic structure for solving differential equations on microprocessors. It is shown that a residue register, which is the distinguishing feature of the digital differential analyser, improves solution accuracy considerably by suppressing the accumulation of roundoff error, which is generally a problem on short-wordlength machines. Both theory and simulation reveal that by employing partial triple precision with residue retention, better than double-precision accuracy may be achieved with only a single-precision multiplication, whereas, without residue retention, single-precision accuracy only is possible.","PeriodicalId":344610,"journal":{"name":"Iee Journal on Computers and Digital Techniques","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iee Journal on Computers and Digital Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IJ-CDT:19790021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes the use of partial double and triple precision with residue retention as a new arithmetic structure for solving differential equations on microprocessors. It is shown that a residue register, which is the distinguishing feature of the digital differential analyser, improves solution accuracy considerably by suppressing the accumulation of roundoff error, which is generally a problem on short-wordlength machines. Both theory and simulation reveal that by employing partial triple precision with residue retention, better than double-precision accuracy may be achieved with only a single-precision multiplication, whereas, without residue retention, single-precision accuracy only is possible.
带剩余保留的部分双精度:微处理器上求解微分方程的新方法
本文提出了一种新的微处理器微分方程求解的算法结构,即带剩余保留的部分双精度和三精度。结果表明,残差寄存器是数字差分分析仪的显著特征,它通过抑制舍入误差的积累,大大提高了解的精度,舍入误差是短字长机器上普遍存在的问题。理论和仿真结果表明,采用带残数保留的部分三精度方法,只需进行一次单精度乘法就可以获得比双精度精度更好的精度,而不进行残数保留时,只进行一次单精度乘法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信