{"title":"A robust eye-corner detection method for real-world data","authors":"G. Santos, Hugo Proença","doi":"10.1109/IJCB.2011.6117596","DOIUrl":null,"url":null,"abstract":"Corner detection has motivated a great deal of research and is particularly important in a variety of tasks related to computer vision, acting as a basis for further stages. In particular, the detection of eye-corners in facial images is important in applications in biometric systems and assisted-driving systems. We empirically evaluated the state-of-the-art of eye-corner detection proposals and found that they achieve satisfactory results only when dealing with high-quality data. Hence, in this paper, we describe an eye-corner detection method that emphasizes robustness, i.e., its ability to deal with degraded data, and applicability to real-world conditions. Our experiments show that the proposed method outperforms others in both noise-free and degraded data (blurred and rotated images and images with significant variations in scale), which is a major achievement.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Corner detection has motivated a great deal of research and is particularly important in a variety of tasks related to computer vision, acting as a basis for further stages. In particular, the detection of eye-corners in facial images is important in applications in biometric systems and assisted-driving systems. We empirically evaluated the state-of-the-art of eye-corner detection proposals and found that they achieve satisfactory results only when dealing with high-quality data. Hence, in this paper, we describe an eye-corner detection method that emphasizes robustness, i.e., its ability to deal with degraded data, and applicability to real-world conditions. Our experiments show that the proposed method outperforms others in both noise-free and degraded data (blurred and rotated images and images with significant variations in scale), which is a major achievement.