An optimal automatic train operation (ATO) control using genetic algorithms (GA)

Seong-Ho Han, Yun Sub Byen, Jong-Hyen Baek, Tae Ki An, S. G. Lee, H. Park
{"title":"An optimal automatic train operation (ATO) control using genetic algorithms (GA)","authors":"Seong-Ho Han, Yun Sub Byen, Jong-Hyen Baek, Tae Ki An, S. G. Lee, H. Park","doi":"10.1109/TENCON.1999.818425","DOIUrl":null,"url":null,"abstract":"This paper shows the form of the optimal solution and how to minimize energy of the train driving control that can be included into automatic train operation (ATO) systems. We consider the case where a train is to be driven by automatic operation mode along a nonconstant gradient curve and with speed limits. Using the genetic algorithms (GA), we constructed an optimal train driving strategy. The results are compared with P. Howlett's optimization method using the constrained optimal technique (Lagrange function and Kuhn-Tucker equations) in view of energy cost benefit. For the case studies, we used a railway track of Seoul City MRT system. As a result of the test, we verified that the proposed algorithm could be of effective energy cost benefit.","PeriodicalId":121142,"journal":{"name":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1999.818425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

This paper shows the form of the optimal solution and how to minimize energy of the train driving control that can be included into automatic train operation (ATO) systems. We consider the case where a train is to be driven by automatic operation mode along a nonconstant gradient curve and with speed limits. Using the genetic algorithms (GA), we constructed an optimal train driving strategy. The results are compared with P. Howlett's optimization method using the constrained optimal technique (Lagrange function and Kuhn-Tucker equations) in view of energy cost benefit. For the case studies, we used a railway track of Seoul City MRT system. As a result of the test, we verified that the proposed algorithm could be of effective energy cost benefit.
基于遗传算法的列车自动运行(ATO)优化控制
本文给出了最优解的形式,以及列车自动运行系统中列车驱动控制能量最小化的方法。我们考虑了一列火车以自动运行方式沿非恒定梯度曲线行驶并有速度限制的情况。利用遗传算法构建了最优列车行驶策略。从能源成本效益的角度出发,将结果与P. Howlett采用约束优化技术(拉格朗日函数和库恩-塔克方程)的优化方法进行了比较。在案例研究中,我们使用了首尔市捷运系统的轨道。实验结果表明,该算法具有有效的能源成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信