Optimal PD Tracking Control of a Quadcopter Drone Using Adaptive PSO Algorithm

E. Yazid, Matthew A. Garrat, Fendy Santoso
{"title":"Optimal PD Tracking Control of a Quadcopter Drone Using Adaptive PSO Algorithm","authors":"E. Yazid, Matthew A. Garrat, Fendy Santoso","doi":"10.1109/IC3INA.2018.8629504","DOIUrl":null,"url":null,"abstract":"Trajectory tracking control for quadcopter drone is a challenging work since the system is multi-input multi-output system, highly non-linear rigid body dynamics and severe cross-coupling. This paper copes that challenges by proposing the adaptive particle swarm optimization (APSO) to optimize the gains of proportional-derivative (PD) controller. The effectiveness of the proposed control algorithm is tested under constant and varying step functions as well as sine function. PSO-based optimal PD and Ziegler-Nichols (ZN)-based optimal PD controllers are taken as benchmarks. The results show that the APSO-PD controller produces shorter settling time with no overshoots than the benchmarks under the predefined trajectories.","PeriodicalId":179466,"journal":{"name":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3INA.2018.8629504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Trajectory tracking control for quadcopter drone is a challenging work since the system is multi-input multi-output system, highly non-linear rigid body dynamics and severe cross-coupling. This paper copes that challenges by proposing the adaptive particle swarm optimization (APSO) to optimize the gains of proportional-derivative (PD) controller. The effectiveness of the proposed control algorithm is tested under constant and varying step functions as well as sine function. PSO-based optimal PD and Ziegler-Nichols (ZN)-based optimal PD controllers are taken as benchmarks. The results show that the APSO-PD controller produces shorter settling time with no overshoots than the benchmarks under the predefined trajectories.
基于自适应粒子群算法的四轴无人机PD最优跟踪控制
由于四轴飞行器是一个多输入多输出、刚体动力学高度非线性、交叉耦合严重的系统,轨迹跟踪控制是一项具有挑战性的工作。针对这一挑战,本文提出了一种自适应粒子群优化算法(APSO)来优化比例微分控制器的增益。在恒阶跃函数和变阶跃函数以及正弦函数下测试了所提控制算法的有效性。以基于pso的最优PD控制器和基于Ziegler-Nichols (ZN)的最优PD控制器为基准。结果表明,在预定轨迹下,APSO-PD控制器的稳定时间比基准更短,且无超调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信