{"title":"Fault Propagation, EMI Propagation, and Fault Containment in Aerospace Systems","authors":"Reinaldo Perez","doi":"10.1109/EMCSI38923.2020.9191632","DOIUrl":null,"url":null,"abstract":"The occurrence of faults in aerospace system hardware and software have consequences ranging from minor effects to catastrophic effects, and such faults can directly affect the safety of hardware and personnel. There are many origins to fault conditions, and the hardware that is capable of still meeting its performance requirements after experiencing itself a fault is said to be fault tolerant. A fault tolerant hardware is capable of detecting, isolating, and recovering from a fault condition; and this is a subfield of control engineering. An aerospace system that has been shown to have electromagnetic compatibility (EMC) in all its subsystems and systems cannot induced faults caused by electromagnetic interference (EMI). It can be proposed that the presence of EMI (or lack of EMC) is analogous to a potential fault initiator and the effects can likewise range from minor to severe. This paper starts by addressing the consequences of hardware failure in aerospace systems from a fault perspective, because the design of fault tolerant system is a major endeavor in aerospace. To arrive to this goal the paper starts with the concepts of fault, fault propagation, and a new concept called fault containment region. The paper then proceeds to provide two very recent examples in the aircraft industry of fault propagation with catastrophic effects. The paper proceeds to introduce the concept of EMI fault containment and a brief introduction to another new concept called the EMI containment region. The paper proceeds with an example of EMI fault containment region. The paper ends with a lesson learned conclusions.","PeriodicalId":189322,"journal":{"name":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI38923.2020.9191632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The occurrence of faults in aerospace system hardware and software have consequences ranging from minor effects to catastrophic effects, and such faults can directly affect the safety of hardware and personnel. There are many origins to fault conditions, and the hardware that is capable of still meeting its performance requirements after experiencing itself a fault is said to be fault tolerant. A fault tolerant hardware is capable of detecting, isolating, and recovering from a fault condition; and this is a subfield of control engineering. An aerospace system that has been shown to have electromagnetic compatibility (EMC) in all its subsystems and systems cannot induced faults caused by electromagnetic interference (EMI). It can be proposed that the presence of EMI (or lack of EMC) is analogous to a potential fault initiator and the effects can likewise range from minor to severe. This paper starts by addressing the consequences of hardware failure in aerospace systems from a fault perspective, because the design of fault tolerant system is a major endeavor in aerospace. To arrive to this goal the paper starts with the concepts of fault, fault propagation, and a new concept called fault containment region. The paper then proceeds to provide two very recent examples in the aircraft industry of fault propagation with catastrophic effects. The paper proceeds to introduce the concept of EMI fault containment and a brief introduction to another new concept called the EMI containment region. The paper proceeds with an example of EMI fault containment region. The paper ends with a lesson learned conclusions.