{"title":"MATRIX: a reconfigurable computing architecture with configurable instruction distribution and deployable resources","authors":"E. Mirsky, A. DeHon","doi":"10.1109/FPGA.1996.564808","DOIUrl":null,"url":null,"abstract":"MATRIX is a novel, coarse-grain, reconfigurable computing architecture which supports configurable instruction distribution. Device resources are allocated to controlling and describing the computation on a per task basis. Application-specific regularity allows us to compress the resources allocated to instruction control and distribution, in many situations yielding more resources for datapaths and computations. The adaptability is made possible by a multi-level configuration scheme, a unified configurable network supporting both datapaths and instruction distribution, and a coarse-grained building block which can serve as an instruction store, a memory element, or a computational element. In a 0.5 /spl mu/ CMOS process, the 8-bit functional unit at the heart of the MATRIX architecture has a footprint of roughly 1.5 mm/spl times/1.2 mm, making single dies with over a hundred function units practical today. At this process point, 100 MHz operation is easily achievable, allowing MATRIX components to deliver on the order of 10 Gop/s (8-bit ops).","PeriodicalId":244873,"journal":{"name":"1996 Proceedings IEEE Symposium on FPGAs for Custom Computing Machines","volume":"2016 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"413","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 Proceedings IEEE Symposium on FPGAs for Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.1996.564808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 413
Abstract
MATRIX is a novel, coarse-grain, reconfigurable computing architecture which supports configurable instruction distribution. Device resources are allocated to controlling and describing the computation on a per task basis. Application-specific regularity allows us to compress the resources allocated to instruction control and distribution, in many situations yielding more resources for datapaths and computations. The adaptability is made possible by a multi-level configuration scheme, a unified configurable network supporting both datapaths and instruction distribution, and a coarse-grained building block which can serve as an instruction store, a memory element, or a computational element. In a 0.5 /spl mu/ CMOS process, the 8-bit functional unit at the heart of the MATRIX architecture has a footprint of roughly 1.5 mm/spl times/1.2 mm, making single dies with over a hundred function units practical today. At this process point, 100 MHz operation is easily achievable, allowing MATRIX components to deliver on the order of 10 Gop/s (8-bit ops).