Human Activity Recognition Using Convolutional Neural Networks

Gulustan Dogan, Sinem Sena Ertas, Iremnaz Cay
{"title":"Human Activity Recognition Using Convolutional Neural Networks","authors":"Gulustan Dogan, Sinem Sena Ertas, Iremnaz Cay","doi":"10.1109/CIBCB49929.2021.9562906","DOIUrl":null,"url":null,"abstract":"Using smartphone sensors to recognize human activity may be advantageous due to the abundant volume of data that can be obtained. In this paper, we propose a sensor data based deep learning approach for recognizing human activity. Our proposed recognition method uses linear accelerometer (LAcc), gyroscope (Gyr), and magnetometer (Mag) sensors to perceive eight transportation and locomotion activities. The eight activities include: Still, Walk, Run, Bike, Bus, Car, Train, and Subway. In this study, the Sussex-Huawei Locomotion (SHL) Dataset of three participants are used to recognize the physical activities of the users. Fast Fourier Transform (FFT) spectrograms generated from the three axes of the LAcc, Gyr, and Mag sensor data are used as input data for our proposed Convolutional Neural Network (CNN) model. Experimental results on the task of human activity recognition demonstrated the effectiveness of our proposed user-independent approach over that of competitive baselines.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Using smartphone sensors to recognize human activity may be advantageous due to the abundant volume of data that can be obtained. In this paper, we propose a sensor data based deep learning approach for recognizing human activity. Our proposed recognition method uses linear accelerometer (LAcc), gyroscope (Gyr), and magnetometer (Mag) sensors to perceive eight transportation and locomotion activities. The eight activities include: Still, Walk, Run, Bike, Bus, Car, Train, and Subway. In this study, the Sussex-Huawei Locomotion (SHL) Dataset of three participants are used to recognize the physical activities of the users. Fast Fourier Transform (FFT) spectrograms generated from the three axes of the LAcc, Gyr, and Mag sensor data are used as input data for our proposed Convolutional Neural Network (CNN) model. Experimental results on the task of human activity recognition demonstrated the effectiveness of our proposed user-independent approach over that of competitive baselines.
基于卷积神经网络的人类活动识别
使用智能手机传感器来识别人类活动可能是有利的,因为可以获得大量的数据。在本文中,我们提出了一种基于传感器数据的深度学习方法来识别人类活动。我们提出的识别方法使用线性加速度计(LAcc)、陀螺仪(Gyr)和磁力计(Mag)传感器来感知八种运输和运动活动。这八种活动包括:静止、步行、跑步、自行车、公共汽车、汽车、火车和地铁。在本研究中,使用三个参与者的Sussex-Huawei Locomotion (SHL) Dataset来识别用户的身体活动。从LAcc、Gyr和Mag传感器数据的三个轴生成的快速傅立叶变换(FFT)频谱图被用作我们提出的卷积神经网络(CNN)模型的输入数据。在人类活动识别任务上的实验结果表明,我们提出的用户独立方法比竞争基线方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信