Estimating Multiple Consumer Segment Ideal Points from Context-Dependent Survey Data

W. DeSarbo, S. Atalay, D. Lebaron, Simon J. Blanchard
{"title":"Estimating Multiple Consumer Segment Ideal Points from Context-Dependent Survey Data","authors":"W. DeSarbo, S. Atalay, D. Lebaron, Simon J. Blanchard","doi":"10.1086/529534","DOIUrl":null,"url":null,"abstract":"Previous research in marketing and consumer research has shown that consumers/households often possess multiple ideal points in a given product/service category. In such cases, traditional segmentation and positioning models that estimate a single ideal point per individual/segment may render an inaccurate portrayal of the true underlying utility functions of such consumers/segments and the resulting market structure. We propose a new clusterwise multiple‐ideal‐point spatial methodology that estimates multiple ideal points at the market segment level while simultaneously determining the market segments' composition of consumers, as well as the corresponding joint space.","PeriodicalId":104737,"journal":{"name":"McDonough: Marketing & International Business (Topic)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"McDonough: Marketing & International Business (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/529534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Previous research in marketing and consumer research has shown that consumers/households often possess multiple ideal points in a given product/service category. In such cases, traditional segmentation and positioning models that estimate a single ideal point per individual/segment may render an inaccurate portrayal of the true underlying utility functions of such consumers/segments and the resulting market structure. We propose a new clusterwise multiple‐ideal‐point spatial methodology that estimates multiple ideal points at the market segment level while simultaneously determining the market segments' composition of consumers, as well as the corresponding joint space.
从情境相关的调查数据中估计多个消费者细分理想点
先前的市场营销和消费者研究表明,消费者/家庭通常在给定的产品/服务类别中拥有多个理想点。在这种情况下,传统的细分和定位模型估计每个人/细分的一个理想点,可能会对这些消费者/细分的真正潜在效用函数和由此产生的市场结构做出不准确的描绘。我们提出了一种新的聚类多理想点空间方法,该方法在细分市场水平上估计多个理想点,同时确定细分市场的消费者组成,以及相应的联合空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信