Small Promise CSPs that reduce to large CSPs

Alexandr Kazda, P. Mayr, Dmitriy Zhuk
{"title":"Small Promise CSPs that reduce to large CSPs","authors":"Alexandr Kazda, P. Mayr, Dmitriy Zhuk","doi":"10.46298/lmcs-18(3:25)2022","DOIUrl":null,"url":null,"abstract":"For relational structures A, B of the same signature, the Promise Constraint\nSatisfaction Problem PCSP(A,B) asks whether a given input structure maps\nhomomorphically to A or does not even map to B. We are promised that the input\nsatisfies exactly one of these two cases.\n If there exists a structure C with homomorphisms $A\\to C\\to B$, then\nPCSP(A,B) reduces naturally to CSP(C). To the best of our knowledge all known\ntractable PCSPs reduce to tractable CSPs in this way. However Barto showed that\nsome PCSPs over finite structures A, B require solving CSPs over infinite C.\n We show that even when such a reduction to finite C is possible, this\nstructure may become arbitrarily large. For every integer $n>1$ and every prime\np we give A, B of size n with a single relation of arity $n^p$ such that\nPCSP(A, B) reduces via a chain of homomorphisms $ A\\to C\\to B$ to a tractable\nCSP over some C of size p but not over any smaller structure. In a second\nfamily of examples, for every prime $p\\geq 7$ we construct A, B of size $p-1$\nwith a single ternary relation such that PCSP(A, B) reduces via $A\\to C\\to B$\nto a tractable CSP over some C of size p but not over any smaller structure. In\ncontrast we show that if A, B are graphs and PCSP(A,B) reduces to tractable\nCSP(C) for some finite digraph C, then already A or B has a tractable CSP. This\nextends results and answers a question of Deng et al.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(3:25)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For relational structures A, B of the same signature, the Promise Constraint Satisfaction Problem PCSP(A,B) asks whether a given input structure maps homomorphically to A or does not even map to B. We are promised that the input satisfies exactly one of these two cases. If there exists a structure C with homomorphisms $A\to C\to B$, then PCSP(A,B) reduces naturally to CSP(C). To the best of our knowledge all known tractable PCSPs reduce to tractable CSPs in this way. However Barto showed that some PCSPs over finite structures A, B require solving CSPs over infinite C. We show that even when such a reduction to finite C is possible, this structure may become arbitrarily large. For every integer $n>1$ and every prime p we give A, B of size n with a single relation of arity $n^p$ such that PCSP(A, B) reduces via a chain of homomorphisms $ A\to C\to B$ to a tractable CSP over some C of size p but not over any smaller structure. In a second family of examples, for every prime $p\geq 7$ we construct A, B of size $p-1$ with a single ternary relation such that PCSP(A, B) reduces via $A\to C\to B$ to a tractable CSP over some C of size p but not over any smaller structure. In contrast we show that if A, B are graphs and PCSP(A,B) reduces to tractable CSP(C) for some finite digraph C, then already A or B has a tractable CSP. This extends results and answers a question of Deng et al.
小承诺csp,减少到大型csp
对于具有相同签名的关系结构A,B,承诺约束满足问题PCSP(A,B)询问给定的输入结构是否同态映射到A或甚至不映射到B。我们保证输入恰好满足这两种情况之一。如果存在具有$A\to C\to B$同态的结构C,则pcsp (a,B)自然化简为CSP(C)。据我们所知,所有已知的可处理的pcsp都以这种方式简化为可处理的csp。然而,Barto表明,在有限结构A, B上的一些pcsp需要在无限C上求解csp。我们表明,即使这种减少到有限C是可能的,这种结构也可能变得任意大。对于每一个整数$n>1$和每一个素数,我们给出大小为n的A, B,它们都有一个单一的关系$n^p$,使得pcsp (A, B)通过同态链$ A\to C\to B$减少到一个可处理的p大小的C上的可处理的lecsp,而不是在任何更小的结构上。在第二类例子中,对于每一个质数$p\geq 7$,我们用一个单一的三元关系构造大小为$p-1$的a, B,使得PCSP(a, B)通过$A\to C\to B$简化为大小为p的C上的可处理的CSP,但不能在任何更小的结构上。相反,我们证明了如果A,B是图,并且对于某个有限有向图C, PCSP(A,B)约简为tractableCSP(C),那么A或B已经有一个可处理的CSP。这扩展了结果并回答了Deng等人的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信