A Discretization of the Hybrid Gradient Algorithm for Linear Regression with Sampled Hybrid Signals

Nathan Wu, Ryan S. Johnson, R. Sanfelice
{"title":"A Discretization of the Hybrid Gradient Algorithm for Linear Regression with Sampled Hybrid Signals","authors":"Nathan Wu, Ryan S. Johnson, R. Sanfelice","doi":"10.23919/ACC55779.2023.10155974","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating a vector of unknown constant parameters for a linear regression model whose inputs and outputs are discretized hybrid signals – that is, they are samples of hybrid signals that exhibit both continuous (flow) and discrete (jump) evolution. Using a hybrid systems framework, we propose a hybrid gradient descent algorithm that operates during both flows and jumps. We show that this algorithm guarantees exponential convergence of the parameter estimate to the unknown parameter under a new notion of discretized hybrid persistence of excitation that relaxes the classical discrete-time persistence of excitation condition. Simulation results validate the properties guaranteed by the new algorithm.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10155974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of estimating a vector of unknown constant parameters for a linear regression model whose inputs and outputs are discretized hybrid signals – that is, they are samples of hybrid signals that exhibit both continuous (flow) and discrete (jump) evolution. Using a hybrid systems framework, we propose a hybrid gradient descent algorithm that operates during both flows and jumps. We show that this algorithm guarantees exponential convergence of the parameter estimate to the unknown parameter under a new notion of discretized hybrid persistence of excitation that relaxes the classical discrete-time persistence of excitation condition. Simulation results validate the properties guaranteed by the new algorithm.
抽样混合信号线性回归混合梯度算法的离散化
我们考虑了一个线性回归模型的未知常数参数向量的估计问题,该模型的输入和输出是离散化的混合信号——也就是说,它们是表现出连续(流)和离散(跳)进化的混合信号的样本。利用混合系统框架,我们提出了一种混合梯度下降算法,该算法在流动和跳跃过程中都可以运行。我们证明了该算法在一个新的离散混合激励持续的概念下保证了参数估计对未知参数的指数收敛性,从而放宽了经典的离散时间激励持续条件。仿真结果验证了新算法所保证的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信